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INTRODUCTION
COCON

COCON: A two-level type theory designed for meta-programming.

[Pientka et al., 2019]
▶ Data-level: Edinburgh logical framework LF.

Used to define languages in higher-order abstract syntax (HOAS).
▶ Meta-level: Martin-Löf type-theory (MLTT).

Used to reason about LF datatypes.
▶ The two levels are linked with a contextual box/unbox modality.
▶ First-class LF contexts and LF context variables.

Heterogeneous meta-programming

▶ We write programs (proofs) in a meta-language.
For us, the the meta-language is MLTT.

▶ We manipulate programs from an object language (OL).
For us, OLs are defined in LF.
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INTRODUCTION
NORMALIZATION BY EVALUATION

Syntax Semantics

Evaluation

Readback

Key advantage: We can extract an evaluation algorithm from the normalization proof.

What we know

▶ NbE for MLTT [Abel et al., 2007].
⇒ NbE for LF since LF ⊆ MLTT.

▶ NbE for modal dependent type theory [Hu et al., 2023].

What we don’t know

▶ How to deal with first-class contexts and context variables.
▶ How to deal with contextual modality.

We can focus on these aspects by restricting our attention to CLF instead of the full COCON.
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SYNTAX OF CLF

Sorts s ::= type | kind
Constants c, a ::= tp | base | arr | tm | lam | app
Expressions M,A,K,E,F ::= s | c | xi | λM | M M′ | ΠA.B | [σ]M | [[θ]]M | ⌊C⌋σ
Contexts Γ ::= · | Xi | Γ,A | [[θ]]Γ
Erased contexts Γ̂ ::= ·,n | Xi,n | [[θ]]Γ̂

Substitutions σ ::= · | idΓ̂ | ↑ | σ,M | [σ]σ′ | [[θ]]σ

Meta-types U ::= #⌈Γ ⊢ A⌉ | ⌈Γ ⊢ A⌉ | ctx | [[θ]]U
Meta-terms C ::= Xi | ⌈Γ̂ ⊢ M⌉ | Γ | [[θ]]C
Meta-contexts ∆ ::= · | ∆,U
Meta-substitutions θ ::= · | ⇑ | θ,C | [[θ]]θ′

(Γ)− = Γ̂ – Context erasure function:

(·)− = ·, 0 (Γ,A)− =

{
·,n + 1 if (Γ)− = ·,n
Xi,n + 1 if (Γ)− = Xi,n

(Xi)
− = Xi, 0 ([[θ]]Γ)− = [[θ]](Γ)−
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TYPING JUDGMENT

∆;Γ ⊢⊢LF M : A and ∆ ⊢⊢M C : U – LF-layer and meta-layer typing.

▶ Normal and parameter boxes:

∆;Γ ⊢⊢LF M : A (Γ)− = Γ̂

∆ ⊢⊢M ⌈Γ̂ ⊢ M⌉ : ⌈Γ ⊢ A⌉
∆ ⊢⊢M C : ⌈Γ′ ⊢ A⌉ ∆;Γ ⊢⊢LF σ : Γ′

∆;Γ ⊢⊢LF ⌊C⌋σ : [σ]A

∆;Γ ⊢⊢LF xi : A (Γ)− = Γ̂

∆ ⊢⊢M ⌈Γ̂ ⊢ xi⌉ : #⌈Γ ⊢ A⌉
∆ ⊢⊢M C : #⌈Γ′ ⊢ A⌉ ∆;Γ ⊢⊢LF σ : Γ′

∆;Γ ⊢⊢LF ⌊C⌋σ : [σ]A

▶ Context variables an contexts as meta-terms:

∆ ⊢⊢M Xi : ctx
∆ ⊢⊢LF Xi ctx

∆ ⊢⊢LF Γ ctx
∆ ⊢⊢M Γ : ctx

▶ Identity substitutions and conversion for substitutions:

∆ ⊢⊢LF Γ ctx (Γ)− = Γ̂

∆; Γ ⊢⊢LF idΓ̂ : Γ

∆; Γ ⊢⊢LF σ : Γ′′ ∆;Γ ⊢⊢LF Γ′ ≡ Γ′′ ctx
∆;Γ ⊢⊢LF σ : Γ′
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EQUATIONAL THEORY
CONTEXTS

▶ Equivalence of contexts is non-trivial with explicit meta-substitutions:

∆ ⊢⊢M θ : ∆′ ∆ ⊢⊢M [[θ]]Xi ≡ Γ : ctx
∆ ⊢⊢LF [[θ]]Xi ≡ Γ ctx

▶ Also need equivalence for erased contexts:

∆ ⊢⊢M θ : ∆′ ∆ ⊢⊢M [[θ]]Xi ≡ Γ : ctx (Γ)− = (·,m)

∆ ⊢⊢LF [[θ]](Xi,n) ≡ (·,n + m) ĉtx

∆ ⊢⊢M θ : ∆′ ∆ ⊢⊢M [[θ]]Xi ≡ Γ : ctx (Γ)− = (Xj,m)

∆ ⊢⊢LF [[θ]](Xi,n) ≡ (Xj,n + m) ĉtx
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∆ ⊢⊢M θ : ∆′ ∆ ⊢⊢M [[θ]]Xi ≡ Γ : ctx (Γ)− = (Xj,m)

∆ ⊢⊢LF [[θ]](Xi,n) ≡ (Xj,n + m) ĉtx

Solution: redefine erasure of [[θ]]Γ:

([[θ]]Γ)− =


(Γ)− if (Γ)− = ·,n
·,n + m if (Γ)− = Xi,n and θ(i) = Γ′ and (Γ′)− = ·,m
Xj,n + m if (Γ)− = Xi,n and θ(i) = Γ′ and (Γ′)− = Xj,m
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EQUATIONAL THEORY
IDENTITY SUBSTITUTIONS

▶ Identities are definable except for context variables. Intuitively:

idΓ̂ = x|Γ|, x|Γ|−1, ..., x1

▶ Expanding identity substitutions formally:

⊢⊢M ∆ mctx
∆; · ⊢⊢LF id(·,0) ≡ · : ·

∆ ⊢⊢LF Γ ctx (Γ)− = ·,n + 1
∆;Γ ⊢⊢LF id(·,n+1) ≡ ([ ↑ ]id(·,n)), x1 : Γ

∆ ⊢⊢LF Γ ctx (Γ)− = Xi,n + 1
∆;Γ ⊢⊢LF id(Xi,n+1) ≡ ([ ↑ ]id(Xi,n)), x1 : Γ

▶ Propagation of meta-substitutions:

∆ ⊢⊢M θ : ∆′ ∆′ ⊢⊢LF Γ ctx (Γ)− = Γ̂

∆; [[θ]]Γ ⊢⊢LF [[θ]]idΓ̂ ≡ id[[θ]]Γ̂ : [[θ]]Γ

∆ ⊢⊢LF Γ̂ ≡ Γ̂′ ctx (Γ)− = Γ̂

∆; Γ ⊢⊢LF idΓ̂ ≡ idΓ̂′ : Γ
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PROPERTIES OF SYNTACTIC JUDGMENTS

Lemma (Correctness of erasure)

1. If ∆ ⊢⊢LF Γ ctx, then (Γ)− terminates without failing.
2. If ∆ ⊢⊢LF Γ ≡ Γ′ ctx, then ∆ ⊢⊢LF (Γ)− ≡ (Γ′)− ctx.

Theorem (Subderivation)

1. If D :: ∆ ⊢⊢LF Γ ctx, then there is D′ :: ⊢⊢M ∆ mctx such that |D′| ≤ |D|
2. If D :: ∆ ⊢⊢LF Γ ≡ Γ′ ctx, then there are D1 :: ⊢⊢M ∆ mctx, D2 :: ∆ ⊢⊢LF Γ ctx, and D3 :: ∆ ⊢⊢LF Γ′ ctx

such that |D1|, |D2|, |D3| ≤ |D|.
3. If D :: ∆; Γ ⊢⊢LF σ : Γ′, then there are D1 :: ∆ ⊢⊢LF Γ ctx and D2 :: ∆ ⊢⊢LF Γ′ ctx such that

|D1|, |D2| ≤ |D|.
4. If D :: ∆; Γ ⊢⊢LF σ ≡ σ′ : Γ′, then there are D1 :: ∆ ⊢⊢LF Γ : ctx, D2 :: ∆ ⊢⊢LF Γ′ ctx,

D3 :: ∆; Γ ⊢⊢LF σ : Γ′, and D4 :: ∆ ⊢⊢LF σ′ : Γ′ such that |D1|, |D2|, |D3|, |D4| ≤ |D|.
And similarly for other judgments.
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NORMALIZATION BY EVALUATION
OVERVIEW

Part 1: Evaluation procedure
1. Define semantics as an untyped domain.

All objects in the domain are in canonical(-ish) form.
• Neutral and normal forms ensure no β-reduction.
• Reflection and reification ensure no η-expansion.

Syntax Semantics

Evaluation

Readback

2. Define evaluation procedure from syntactic objects to normal domain objects.
3. Define readback procedure from canonical domain objects to (canonical) syntactic objects.

Part 2: Proving correctness

4. Model typing and equality in the domain with partial equivalence relations (PER model).
5. Prove that syntactically equal objects evaluate to PER-related domain objects.
6. Prove that PER-related domain objects readback to the same thing.
7. Conclude syntactically equal objects have the same normal form (Completeness).
8. Prove that well-formed objects are syntactically equal to their normal form (Soundness).
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Part 2: Proving correctness

4. Model typing and equality in the domain with partial equivalence relations (PER model).
5. Prove that syntactically equal objects evaluate to PER-related domain objects.
6. Prove that PER-related domain objects readback to the same thing.
7. Conclude syntactically equal objects have the same normal form (Completeness).
8. Prove that well-formed objects are syntactically equal to their normal form (Soundness).
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NORMALIZATION BY EVALUATION
DOMAIN

Sorts s ::= type | kind
Constants c, a ::= tp | base | arr | tm | lam | app

de Bruijn levels ℓ ::= n | n + o where n ≥ 1
Neutral expressions e, f ::= vℓ | e d | unbox h with ρ
Normal expressions m, a, k ::= ↑a e | s | (ΛM)τ ; ρ | (Πa.A)τ ; ρ | c | arr a | arr a b

| tm a | lam a | lam a b | lam a b m
| app a | app a b | app a b m | app a b m n

Canonical expressions d ::= ↓a m

Contexts γ ::= · | Vi | γ, a
Erased contexts γ̂ = ·,n | Vi,n

Environment ρ ::= · | idVi | ρ,m

Meta-types u ::= #⌈⌈(γ ⊢ A)τ⌉⌉ | ⌈⌈(γ ⊢ A)τ⌉⌉ | ctx
Meta-neutrals h ::= Vi
Meta-normals c ::= ↑u h | box(γ̂ ⊢ M)τ | γ
Meta-canonicals d ::= ↓u c
Meta-environments τ ::= · | τ, c
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NORMALIZATION BY EVALUATION
EVALUATION

Box and unbox

▶ [[C]]M(τ) ↘ c – Meta-term C evaluates to c in meta-environment τ .

▶ [[U]]tM(τ) ↘ u – Meta-type U evaluates to u in meta-environment τ .

[[Γ̂]]ĉLF(τ) ↘ γ̂

[[⌈Γ̂ ⊢ M⌉]]M(τ) ↘ box(γ̂ ⊢ M)τ

[[Γ]]cLF(τ) ↘ γ

[[⌈Γ ⊢ A⌉]]tM(τ) ↘ ⌈⌈(γ ⊢ A)τ⌉⌉

▶ [[E]]LF(τ ; ρ) ↘ m – LF expression M evaluates to m in environment τ ; ρ

▶ unbox · c with ρ ↘ m – Unboxing c with environment ρ yields m.

[[C]]M(τ) ↘ c [[σ]]sLF(τ ; ρ) ↘ ρ′ unbox · c with ρ′ ↘ m
[[⌊C⌋σ]]LF(τ ; ρ) ↘ m

[[M]]LF(τ ; ρ) ↘ m
unbox · box(γ̂ ⊢ M)τ with ρ ↘ m

[[A]]LF(τ ; ρ) ↘ a

unbox · (↑⌈⌈(γ⊢A)τ⌉⌉ h) with ρ ↘↑a (unbox h with ρ)
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[[Γ̂]]ĉLF(τ) ↘ γ̂

[[⌈Γ̂ ⊢ M⌉]]M(τ) ↘ box(γ̂ ⊢ M)τ

[[Γ]]cLF(τ) ↘ γ

[[⌈Γ ⊢ A⌉]]tM(τ) ↘ ⌈⌈(γ ⊢ A)τ⌉⌉

▶ [[E]]LF(τ ; ρ) ↘ m – LF expression M evaluates to m in environment τ ; ρ

▶ unbox · c with ρ ↘ m – Unboxing c with environment ρ yields m.

[[C]]M(τ) ↘ c [[σ]]sLF(τ ; ρ) ↘ ρ′ unbox · c with ρ′ ↘ m
[[⌊C⌋σ]]LF(τ ; ρ) ↘ m

[[M]]LF(τ ; ρ) ↘ m
unbox · box(γ̂ ⊢ M)τ with ρ ↘ m

[[A]]LF(τ ; ρ) ↘ a

unbox · (↑⌈⌈(γ⊢A)τ⌉⌉ h) with ρ ↘↑a (unbox h with ρ)

NORMALIZATION BY EVALUATION FOR COCON 10 / 16



NORMALIZATION BY EVALUATION
EVALUATION

Contexts

▶ [[Γ]]cLF(τ) ↘ γ – LF context Γ evaluates to γ in meta-environment τ .

[[·]]cLF(τ) ↘ · [[Xi]]
c
LF(τ) ↘ τ(i)

[[θ]]sM(τ) ↘ τ ′ [[Γ]]cLF(τ
′) ↘ γ

[[[[θ]]Γ]]cLF(τ) ↘ γ

[[Γ]]cLF(τ) ↘ γ [[A]]LF(τ ; ρ
∗
γ) ↘ a

[[Γ,A]]cLF(τ) ↘ γ, a

▶ Initital LF environment for γ, denoted ρ∗γ :

ρ∗· = · | · | = 0
ρ∗Vi

= idVi |Vi| = o
ρ∗γ,a = ρ∗γ , ↑a v|γ|+1 |γ, a| = |γ|+ 1

For syntactic contexts: ρ∗∆;Γ := ρ∗γ , where [[Γ]]cLF(τ
∗
∆) ↘ γ.
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NORMALIZATION BY EVALUATION
EVALUATION

Erased contexts

▶ [[Γ̂]]ĉLF(τ) ↘ γ̂ – Erased context Γ̂ evaluates to γ̂ in meta-environment τ .

[[·,n]]ĉLF(τ) ↘ ·,n

(τ(i))− = ·,m

[[Xi,n]]ĉLF(τ) ↘ ·,m + n

(τ(i))− = Vj,m

[[Xi,n]]ĉLF(τ) ↘ Vj,m + n

LF substitutions

▶ [[σ]]sLF(τ ; ρ) ↘ ρ′ – LF substitution σ evaluates to ρ′ in environments τ ; ρ.

[[·]]sLF(τ ; ρ) ↘ · [[idΓ̂]]
s
LF(τ ; ρ) ↘ ρ

Note. Domain identity environments idVi only occur in initial environments.
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NORMALIZATION BY EVALUATION
READBACK

Box and unbox

▶ RDnf
M

k (c) ↘ C – Domain canonical meta-term c readbacks to C.

RCtxLF
k (γ) ↘ Γ (Γ)− = Γ̂ [[A]]LF(τ ; ρ

∗
γ) ↘ a unbox · c with ρ∗γ ↘ m RDnf

LF
k,|γ|(↓

a m) ↘ M

RDnf
M

k (↓⌈⌈(γ⊢A)τ⌉⌉ c) ↘ ⌈Γ̂ ⊢ M⌉

▶ RDne
LF

k,l (e) ↘ E – Domain neutral expression e readbacks to E.

RDne
M

k (h) ↘ E REnvLF
k,l (ρ) ↘ σ

RDne
LF

k,l (unbox h with ρ) ↘ ⌊E⌋σ
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NORMALIZATION BY EVALUATION
READBACK

Contexts and erased contexts

▶ RCtxLF
k (γ) ↘ Γ – Normal LF domain context γ readbacks to Γ.

RCtxLF
k (·) ↘ · RCtxLF

k (Vi) ↘ Xk−i+1

RCtxLF
k (γ) ↘ Γ RDnf

LF
k,|γ|+1(a) ↘ A

RCtxLF
k (γ, a) ↘ Γ,A

▶ RĈtxLF
k (γ̂) ↘ Γ̂ – Erased context γ̂ readbacks to Γ̂.

RĈtxLF
k (·,n) ↘ ·,n RĈtxLF

k (Vi,n) ↘ Xk−i+1,n

Environments

▶ REnvLF
k,l (ρ) ↘ σ – Environment ρ readbacks to substitution σ.

REnvLF
k,l (idVi) ↘ id(Xk−i+1,0)
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NORMALIZATION BY EVALUATION
PROPERTIES OF EVALUATION AND READBACK

Theorem (Determinacy)

All the evaluation and readback relations are deterministic in their last parameter. Precisely:
1. If [[M]]LF(τ ; ρ) ↘ m and [[M]]LF(τ ; ρ) ↘ m′, then m = m′.
2. If [[Γ]]cLF(τ) ↘ γ and [[Γ]]cLF(τ) ↘ γ′, then γ = γ′.
...

8. If RDnf
LF

k,l (m) ↘ M and RDnf
LF

k,l (m) ↘ M′, then M = M′.

9. If RCtxLF
k (γ) ↘ Γ and RCtxLF

k (γ) ↘ Γ′, then Γ = Γ′.
...

In other words, evaluation and readback are partial functions.

⇒ We can now define normalization (partial) functions:

nbeA
∆;Γ(M) := RDnf

LF
k,l

(
↓[[A]]LF(τ

∗
∆;ρ∗∆;Γ) [[M]]LF(τ

∗
∆; ρ

∗
∆;Γ)

)
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CONCLUSION

Recap

▶ Extended CLF with first-class contexts and context variables.
▶ Extended Abel and Pientka [2010]’s explicit substitution calculus to our version of CLF.

▶ Defined semantic domain and normalization procedure for CLF.

Next time

▶ Define PER model.
▶ Overview of completeness proof.

Future work

▶ Prove soundness of normalization.
▶ Scale up from CLF to COCON by extending the meta-level to MLTT.

• Universe hierarchy • Dependent function • Recursion over LF objects
▶ Add first-class substitutions and substitution variables.
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