NORMALIZATION BY EVALUATION FOR COCON, PART 1: EVALUATION (WORK IN PROGRESS)

Antoine Gaulin Jason Hu Junyoung Jang Brigitte Pientka

McGill University

August 20, 2024

INTRODUCTION COCON

COCON: A two-level type theory designed for meta-programming.

[Pientka et al., 2019]

- Data-level: Edinburgh logical framework LF.
 Used to define languages in higher-order abstract syntax (HOAS).
- Meta-level: Martin-Löf type-theory (MLTT). Used to reason about LF datatypes.
- ► The two levels are linked with a contextual box/unbox modality.
- ► First-class LF contexts and LF context variables.

INTRODUCTION COCON

COCON: A two-level type theory designed for meta-programming.

[Pientka et al., 2019]

- Data-level: Edinburgh logical framework LF.
 Used to define languages in higher-order abstract syntax (HOAS).
- Meta-level: Martin-Löf type-theory (MLTT). Used to reason about LF datatypes.
- ► The two levels are linked with a contextual box/unbox modality.
- ► First-class LF contexts and LF context variables.

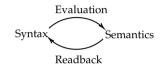
Heterogeneous meta-programming

- We write programs (proofs) in a meta-language. For us, the the meta-language is MLTT.
- We manipulate programs from an object language (OL).
 For us, OLs are defined in LF.

INTRODUCTION NORMALIZATION BY EVALUATION

Key advantage: We can extract an evaluation algorithm from the normalization proof.

INTRODUCTION Normalization by Evaluation

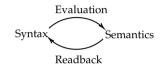


Key advantage: We can extract an evaluation algorithm from the normalization proof.

What we know

- NbE for MLTT [Abel et al., 2007].
 ⇒ NbE for LF since LF ⊆ MLTT.
- ▶ NbE for modal dependent type theory [Hu et al., 2023].

INTRODUCTION Normalization by Evaluation



Key advantage: We can extract an evaluation algorithm from the normalization proof.

What we know

- NbE for MLTT [Abel et al., 2007].
 ⇒ NbE for LF since LF ⊆ MLTT.
- ▶ NbE for modal dependent type theory [Hu et al., 2023].

What we don't know

- How to deal with first-class contexts and context variables.
- How to deal with contextual modality.

We can focus on these aspects by restricting our attention to CLF instead of the full COCON.

SYNTAX OF CLF

Sorts Constants Expressions	c , a	::=	type kind tp base arr tm lam app $s \mathbf{c} x_i \lambda M M M' \Pi A.B [\sigma]M [\![\theta]\!]M \lfloor C \rfloor_{\sigma}$
Contexts Erased contexts			$egin{aligned} &\cdot \mid X_i \mid \Gamma, A \mid \llbracket heta rbracket \Gamma rbracket \ \cdot, n \mid X_i, n \mid \llbracket heta rbracket \hat{\Gamma} \end{aligned}$
Substitutions	σ	::=	$\cdot \mid id_{\hat{\Gamma}} \mid \uparrow \mid \sigma, M \mid [\sigma] \sigma' \mid \llbracket heta rbracket \sigma$
Meta-types Meta-terms Meta-contexts Meta-substitutions	$C \\ \Delta$::= ::=	$ \begin{split} &\#\lceil \Gamma \vdash A\rceil \mid \lceil \Gamma \vdash A\rceil \mid ctx \mid \llbracket \theta \rrbracket U \\ &X_i \mid \lceil \hat{\Gamma} \vdash M\rceil \mid \Gamma \mid \llbracket \theta \rrbracket C \\ &\cdot \mid \Delta, U \\ &\cdot \mid \theta, C \mid \llbracket \theta \rrbracket \theta' \end{split} $

SYNTAX OF CLF

Sorts Constants Expressions	c , a	::=	type kind tp base arr tm lam app $s \mathbf{c} x_i \lambda M M M' \Pi A.B [\sigma]M [\![\theta]\!]M [C]_{\sigma}$
Contexts Erased contexts			$egin{aligned} &\cdot \mid X_i \mid \Gamma, A \mid \llbracket heta rbracket \Gamma \ \cdot, n \mid X_i, n \mid \llbracket heta rbracket \hat{\Gamma} \end{aligned}$
Substitutions	σ	::=	$\cdot \mid id_{\hat{\Gamma}} \mid \uparrow \mid \sigma, M \mid [\sigma] \sigma' \mid \llbracket heta rbracket \sigma$
Meta-types Meta-terms Meta-contexts Meta-substitutions	$C \\ \Delta$::= ::=	$egin{aligned} &\# \lceil \Gamma dash A ceil \mid \lceil \Gamma dash A ceil \mid ctx \mid \llbracket heta rbrace U \ &X_i \mid \lceil \hat{\Gamma} dash M ceil \mid \Gamma \mid \llbracket heta rbrace C \ &\cdot \mid \Delta, U \ &\cdot \mid \Delta, C \mid \llbracket heta rbrace heta rbrace H rbrace heta rbrace \ & heta rbrace H rbrace heta rbrace C \ &ect rbrace H rbrace heta rblace heta $

 $\overline{(\Gamma)^{-} = \hat{\Gamma}}$ – Context erasure function:

$$\begin{aligned} (\cdot)^{-} &= & \cdot, 0 \qquad (\Gamma, A)^{-} &= \begin{cases} \cdot, n+1 & \text{if } (\Gamma)^{-} = \cdot, n \\ X_i, n+1 & \text{if } (\Gamma)^{-} = X_i, n \end{cases} \\ (X_i)^{-} &= & X_i, 0 \qquad (\llbracket \theta \rrbracket \Gamma)^{-} = & \llbracket \theta \rrbracket (\Gamma)^{-} \end{aligned}$$

 $\Delta; \Gamma \Vdash^{LF} M : A$ and $\Delta \Vdash^{\mathcal{M}} C : U$ – LF-layer and meta-layer typing.

 $\Delta; \Gamma \Vdash^{LF} M : A$ and $\Delta \Vdash^{\mathcal{M}} C : U$ – LF-layer and meta-layer typing.

► Normal and parameter boxes:

$$\frac{\Delta; \Gamma \Vdash^{\mathrm{LF}} M : A \quad (\Gamma)^{-} = \hat{\Gamma}}{\Delta \Vdash^{\mathcal{M}} [\hat{\Gamma} \vdash M] : [\Gamma \vdash A]} \qquad \qquad \frac{\Delta \Vdash^{\mathcal{M}} C : [\Gamma' \vdash A] \quad \Delta; \Gamma \Vdash^{\mathrm{LF}} \sigma : \Gamma'}{\Delta; \Gamma \Vdash^{\mathrm{LF}} [C]_{\sigma} : [\sigma]A} \\
\frac{\Delta; \Gamma \Vdash^{\mathrm{LF}} x_{i} : A \quad (\Gamma)^{-} = \hat{\Gamma}}{\Delta \vdash^{\mathcal{M}} [\hat{\Gamma} \vdash x_{i}] : \#[\Gamma \vdash A]} \qquad \qquad \frac{\Delta \Vdash^{\mathcal{M}} C : \#[\Gamma' \vdash A] \quad \Delta; \Gamma \Vdash^{\mathrm{LF}} \sigma : \Gamma'}{\Delta; \Gamma \Vdash^{\mathrm{LF}} [C]_{\sigma} : [\sigma]A}$$

 $\Delta; \Gamma \Vdash^{LF} M : A$ and $\Delta \Vdash^{\mathcal{M}} C : U$ – LF-layer and meta-layer typing.

► Normal and parameter boxes:

$$\frac{\Delta; \Gamma \Vdash^{\mathrm{LF}} M : A \quad (\Gamma)^{-} = \hat{\Gamma}}{\Delta \Vdash^{\mathcal{M}} [\hat{\Gamma} \vdash M] : [\Gamma \vdash A]} \qquad \qquad \frac{\Delta \Vdash^{\mathcal{M}} C : [\Gamma' \vdash A] \quad \Delta; \Gamma \Vdash^{\mathrm{LF}} \sigma : \Gamma'}{\Delta; \Gamma \Vdash^{\mathrm{LF}} [C]_{\sigma} : [\sigma]A}$$
$$\frac{\Delta; \Gamma \Vdash^{\mathrm{LF}} x_{i} : A \quad (\Gamma)^{-} = \hat{\Gamma}}{\Delta \Vdash^{\mathcal{M}} [\hat{\Gamma} \vdash x_{i}] : \#[\Gamma \vdash A]} \qquad \qquad \frac{\Delta \Vdash^{\mathcal{M}} C : \#[\Gamma' \vdash A] \quad \Delta; \Gamma \Vdash^{\mathrm{LF}} \sigma : \Gamma'}{\Delta; \Gamma \Vdash^{\mathrm{LF}} [C]_{\sigma} : [\sigma]A}$$

• Context variables an contexts as meta-terms:

$$\frac{\Delta \Vdash^{\mathcal{M}} X_i : \mathsf{ctx}}{\Delta \Vdash^{\mathrm{LF}} X_i \mathsf{ctx}} \qquad \frac{\Delta \Vdash^{\mathrm{LF}} \Gamma \mathsf{ctx}}{\Delta \Vdash^{\mathcal{M}} \Gamma : \mathsf{ctx}}$$

 $\Delta; \Gamma \Vdash^{LF} M : A$ and $\Delta \Vdash^{\mathcal{M}} C : U$ – LF-layer and meta-layer typing.

► Normal and parameter boxes:

$\frac{\Delta; \Gamma \Vdash^{\mathrm{LF}} M : A (\Gamma)^{-} = \widehat{\Gamma}}{\Delta \Vdash^{\mathcal{M}} \lceil \widehat{\Gamma} \vdash M \rceil : \lceil \Gamma \vdash A \rceil}$	$\frac{\Delta \Vdash^{\mathcal{M}} C : [\Gamma' \vdash A] \Delta; \Gamma \Vdash^{\mathrm{LF}} \sigma : \Gamma'}{\Delta; \Gamma \Vdash^{\mathrm{LF}} \lfloor C \rfloor_{\sigma} : [\sigma]A}$
$\frac{\Delta; \Gamma \Vdash^{\mathrm{LF}} x_i : A (\Gamma)^- = \hat{\Gamma}}{\Delta \Vdash^{\mathcal{M}} [\hat{\Gamma} \vdash x_i] : \# [\Gamma \vdash A]}$	$\frac{\Delta \Vdash^{\mathcal{M}} C : \#[\Gamma' \vdash A] \Delta; \Gamma \Vdash^{\mathrm{LF}} \sigma : \Gamma'}{\Delta; \Gamma \Vdash^{\mathrm{LF}} \lfloor C \rfloor_{\sigma} : [\sigma]A}$

• Context variables an contexts as meta-terms:

$$\frac{\Delta \Vdash^{\mathcal{M}} X_i : \mathsf{ctx}}{\Delta \Vdash^{\mathsf{LF}} X_i \mathsf{ctx}} \qquad \frac{\Delta \Vdash^{\mathsf{LF}} \Gamma \mathsf{ctx}}{\Delta \Vdash^{\mathcal{M}} \Gamma : \mathsf{ctx}}$$

Identity substitutions and conversion for substitutions:

$$\frac{\Delta \Vdash^{\mathrm{LF}} \Gamma \operatorname{ctx} \quad (\Gamma)^{-} = \hat{\Gamma}}{\Delta; \Gamma \Vdash^{\mathrm{LF}} \operatorname{id}_{\hat{\Gamma}} : \Gamma} \qquad \frac{\Delta; \Gamma \Vdash^{\mathrm{LF}} \sigma : \Gamma'' \quad \Delta; \Gamma \Vdash^{\mathrm{LF}} \Gamma' \equiv \Gamma'' \operatorname{ctx}}{\Delta; \Gamma \Vdash^{\mathrm{LF}} \sigma : \Gamma'}$$

• Equivalence of contexts is non-trivial with explicit meta-substitutions:

$$\frac{\Delta \Vdash^{\mathcal{M}} \theta : \Delta' \quad \Delta \Vdash^{\mathcal{M}} \llbracket \theta \rrbracket X_i \equiv \Gamma : \mathsf{ctx}}{\Delta \Vdash^{\mathrm{LF}} \llbracket \theta \rrbracket X_i \equiv \Gamma \mathsf{ctx}}$$

• Equivalence of contexts is non-trivial with explicit meta-substitutions:

$$\frac{\Delta \Vdash^{\mathcal{M}} \theta : \Delta' \quad \Delta \Vdash^{\mathcal{M}} \llbracket \theta \rrbracket X_i \equiv \Gamma : \mathsf{ctx}}{\Delta \Vdash^{\mathsf{LF}} \llbracket \theta \rrbracket X_i \equiv \Gamma \mathsf{ctx}}$$

Also need equivalence for erased contexts:

$$\begin{split} & \underbrace{\Delta \Vdash^{\mathcal{M}} \theta : \Delta' \quad \Delta \Vdash^{\mathcal{M}} \llbracket \theta \rrbracket X_i \equiv \Gamma : \mathsf{ctx} \quad (\Gamma)^- = (\cdot, m) }_{\Delta \Vdash^{\mathrm{LF}} \llbracket \theta \rrbracket (X_i, n) \equiv (\cdot, n + m) \ \widehat{\mathsf{ctx}}} \\ & \underbrace{\Delta \Vdash^{\mathcal{M}} \theta : \Delta' \quad \Delta \Vdash^{\mathcal{M}} \llbracket \theta \rrbracket X_i \equiv \Gamma : \mathsf{ctx} \quad (\Gamma)^- = (X_j, m) }_{\Delta \Vdash^{\mathrm{LF}} \llbracket \theta \rrbracket (X_i, n) \equiv (X_j, n + m) \ \widehat{\mathsf{ctx}}} \end{split}$$

• Equivalence of contexts is non-trivial with explicit meta-substitutions:

$$\frac{\Delta \Vdash^{\mathcal{M}} \theta : \Delta' \quad \Delta \Vdash^{\mathcal{M}} \llbracket \theta \rrbracket X_i \equiv \Gamma : \mathsf{ctx}}{\Delta \Vdash^{\mathsf{LF}} \llbracket \theta \rrbracket X_i \equiv \Gamma \mathsf{ctx}}$$

Also need equivalence for erased contexts:

$$\begin{split} \frac{\Delta \Vdash^{\mathcal{M}} \theta : \Delta' \quad \Delta \Vdash^{\mathcal{M}} \llbracket \theta \rrbracket X_i \equiv \Gamma : \mathsf{ctx} \quad (\Gamma)^- = (\cdot, m)}{\Delta \Vdash^{\mathrm{LF}} \llbracket \theta \rrbracket (X_i, n) \equiv (\cdot, n + m) \, \widehat{\mathsf{ctx}}} \\ \frac{\Delta \vdash^{\mathcal{M}} \theta : \Delta' \quad \Delta \vdash^{\mathcal{M}} \llbracket \theta \rrbracket X_i \equiv \Gamma : \mathsf{ctx} \quad (\Gamma)^- = (X_j, m)}{\Delta \vdash^{\mathrm{LF}} \llbracket \theta \rrbracket (X_i, n) \equiv (X_j, n + m) \, \widehat{\mathsf{ctx}}} \\ \frac{\Delta \vdash^{\mathcal{M}} \theta : \Delta' \quad \Delta \vdash^{\mathcal{M}} \llbracket \theta \rrbracket X_i \equiv \Gamma : \mathsf{ctx} \quad (\Gamma)^- = \llbracket \theta' \rrbracket \hat{\Gamma}'}{\Delta \Vdash^{\mathrm{LF}} \llbracket \theta \rrbracket (X_i, n) \equiv ??? \, \widehat{\mathsf{ctx}}} \end{split}$$

• Equivalence of contexts is non-trivial with explicit meta-substitutions:

$$\frac{\Delta \Vdash^{\mathcal{M}} \theta : \Delta' \quad \Delta \Vdash^{\mathcal{M}} \llbracket \theta \rrbracket X_i \equiv \Gamma : \mathsf{ctx}}{\Delta \Vdash^{\mathsf{LF}} \llbracket \theta \rrbracket X_i \equiv \Gamma \mathsf{ctx}}$$

Also need equivalence for erased contexts:

$$\frac{\Delta \Vdash^{\mathcal{M}} \theta : \Delta' \quad \Delta \Vdash^{\mathcal{M}} \llbracket \theta \rrbracket X_i \equiv \Gamma : \mathsf{ctx} \quad (\Gamma)^- = (\cdot, m)}{\Delta \Vdash^{\mathrm{LF}} \llbracket \theta \rrbracket (X_i, n) \equiv (\cdot, n + m) \widehat{\mathsf{ctx}}}$$
$$\frac{\Delta \Vdash^{\mathcal{M}} \theta : \Delta' \quad \Delta \Vdash^{\mathcal{M}} \llbracket \theta \rrbracket X_i \equiv \Gamma : \mathsf{ctx} \quad (\Gamma)^- = (X_j, m)}{\Delta \Vdash^{\mathrm{LF}} \llbracket \theta \rrbracket (X_i, n) \equiv (X_j, n + m) \widehat{\mathsf{ctx}}}$$

Solution: redefine erasure of $\llbracket \theta \rrbracket \Gamma$:

$$(\llbracket \theta \rrbracket \Gamma)^{-} = \begin{cases} (\Gamma)^{-} & \text{if } (\Gamma)^{-} = \cdot, n \\ \cdot, n + m & \text{if } (\Gamma)^{-} = X_i, n \text{ and } \theta(i) = \Gamma' \text{ and } (\Gamma')^{-} = \cdot, m \\ X_j, n + m & \text{if } (\Gamma)^{-} = X_i, n \text{ and } \theta(i) = \Gamma' \text{ and } (\Gamma')^{-} = X_j, m \end{cases}$$

EQUATIONAL THEORY Identity substitutions

► Identities are definable except for context variables. Intuitively:

 $\mathsf{id}_{\hat{\Gamma}} = x_{|\Gamma|}, x_{|\Gamma|-1}, ..., x_1$

EQUATIONAL THEORY Identity substitutions

► Identities are definable except for context variables. Intuitively:

$$\mathsf{id}_{\hat{\Gamma}} = x_{|\Gamma|}, x_{|\Gamma|-1}, ..., x_1$$

• Expanding identity substitutions formally:

$$\frac{\mathbb{H}^{\mathcal{M}} \Delta \operatorname{mctx}}{\Delta; \cdot \mathbb{H}^{\mathrm{LF}} \operatorname{id}_{(\cdot,0)} \equiv \cdot : \cdot} \qquad \frac{\Delta \mathbb{H}^{\mathrm{LF}} \Gamma \operatorname{ctx}}{\Delta; \Gamma \mathbb{H}^{\mathrm{LF}} \operatorname{id}_{(\cdot,n+1)} \equiv ([\uparrow] \operatorname{id}_{(\cdot,n)}), x_1 : \Gamma}$$

EQUATIONAL THEORY Identity substitutions

► Identities are definable except for context variables. Intuitively:

$$\mathsf{id}_{\hat{\Gamma}} = x_{|\Gamma|}, x_{|\Gamma|-1}, ..., x_1$$

• Expanding identity substitutions formally:

$$\frac{ \underset{\Delta; \cdot \overset{}{\Vdash} \overset{}{\Vdash} \overset{}{\Vdash} \overset{}{\Vdash} \overset{}{\Vdash} \overset{}{\Vdash} \overset{}{\Vdash} \overset{}{\mapsto} \overset{}$$

EQUATIONAL THEORY

► Identities are definable except for context variables. Intuitively:

$$\mathsf{id}_{\hat{\Gamma}} = x_{|\Gamma|}, x_{|\Gamma|-1}, ..., x_1$$

• Expanding identity substitutions formally:

$$\frac{\mathbb{H}^{\mathcal{M}} \Delta \operatorname{mctx}}{\Delta; \cdot \mathbb{H}^{\mathrm{LF}} \operatorname{id}_{(\cdot,0)} \equiv \cdot : \cdot} \qquad \frac{\Delta \mathbb{H}^{\mathrm{LF}} \Gamma \operatorname{ctx} (\Gamma)^{-} = \cdot, n+1}{\Delta; \Gamma \mathbb{H}^{\mathrm{LF}} \operatorname{id}_{(\cdot,n+1)} \equiv ([\uparrow] \operatorname{id}_{(\cdot,n)}), x_{1} : \Gamma} \\ \frac{\Delta \mathbb{H}^{\mathrm{LF}} \Gamma \operatorname{ctx} (\Gamma)^{-} = X_{i}, n+1}{\Delta; \Gamma \mathbb{H}^{\mathrm{LF}} \operatorname{id}_{(X_{i},n+1)} \equiv ([\uparrow] \operatorname{id}_{(X_{i},n)}), x_{1} : \Gamma}$$

Propagation of meta-substitutions:

$$\frac{\Delta \Vdash^{\mathcal{M}} \theta : \Delta' \quad \Delta' \Vdash^{\mathrm{LF}} \Gamma \operatorname{ctx} \quad (\Gamma)^{-} = \hat{\Gamma}}{\Delta; \llbracket \theta \rrbracket \Gamma \Vdash^{\mathrm{LF}} \llbracket \theta \rrbracket \operatorname{id}_{\hat{\Gamma}} \equiv \operatorname{id}_{\llbracket \theta \rrbracket \hat{\Gamma}} : \llbracket \theta \rrbracket \Gamma} \qquad \frac{\Delta \Vdash^{\mathrm{LF}} \hat{\Gamma} \equiv \hat{\Gamma}' \operatorname{ctx} \quad (\Gamma)^{-} = \hat{\Gamma}'}{\Delta; \Gamma \Vdash^{\mathrm{LF}} \operatorname{id}_{\hat{\Gamma}} \equiv \operatorname{id}_{\hat{\Gamma}'} : \Gamma}$$

PROPERTIES OF SYNTACTIC JUDGMENTS

Lemma (Correctness of erasure)

- 1. If $\Delta \Vdash^{\text{LF}} \Gamma \operatorname{ctx}$, then $(\Gamma)^-$ terminates without failing.
- 2. If $\Delta \Vdash^{\text{\tiny LF}} \Gamma \equiv \Gamma' \operatorname{ctx}$, then $\Delta \Vdash^{\text{\tiny LF}} (\Gamma)^- \equiv (\Gamma')^- \operatorname{ctx}$.

PROPERTIES OF SYNTACTIC JUDGMENTS

Lemma (Correctness of erasure)

- 1. If $\Delta \Vdash^{\text{LF}} \Gamma \operatorname{\mathsf{ctx}}$, then $(\Gamma)^-$ terminates without failing.
- 2. If $\Delta \Vdash^{\text{LF}} \Gamma \equiv \Gamma' \operatorname{ctx}$, then $\Delta \Vdash^{\text{LF}} (\Gamma)^- \equiv (\Gamma')^- \operatorname{ctx}$.

Theorem (Subderivation)

- 1. If $\mathcal{D} :: \Delta \Vdash^{\text{LF}} \Gamma$ ctx, then there is $\mathcal{D}' :: \Vdash^{\mathcal{M}} \Delta$ mctx such that $|\mathcal{D}'| \leq |\mathcal{D}|$
- 2. If $\mathcal{D} :: \Delta \Vdash^{\text{LF}} \Gamma \equiv \Gamma' \operatorname{ctx}$, then there are $\mathcal{D}_1 :: \Vdash^{\mathcal{M}} \Delta \operatorname{mctx}$, $\mathcal{D}_2 :: \Delta \Vdash^{\text{LF}} \Gamma \operatorname{ctx}$, and $\mathcal{D}_3 :: \Delta \Vdash^{\text{LF}} \Gamma' \operatorname{ctx}$ such that $|\mathcal{D}_1|, |\mathcal{D}_2|, |\mathcal{D}_3| \leq |\mathcal{D}|$.
- 3. If $\mathcal{D} :: \Delta; \Gamma \Vdash^{\text{LF}} \sigma : \Gamma'$, then there are $\mathcal{D}_1 :: \Delta \Vdash^{\text{LF}} \Gamma$ ctx and $\mathcal{D}_2 :: \Delta \Vdash^{\text{LF}} \Gamma'$ ctx such that $|\mathcal{D}_1|, |\mathcal{D}_2| \leq |\mathcal{D}|.$
- 4. If $\mathcal{D} :: \Delta; \Gamma \Vdash^{\mathrm{LF}} \sigma \equiv \sigma' : \Gamma'$, then there are $\mathcal{D}_1 :: \Delta \Vdash^{\mathrm{LF}} \Gamma : \operatorname{ctx}, \mathcal{D}_2 :: \Delta \Vdash^{\mathrm{LF}} \Gamma' \operatorname{ctx}, \mathcal{D}_3 :: \Delta; \Gamma \Vdash^{\mathrm{LF}} \sigma : \Gamma'$, and $\mathcal{D}_4 :: \Delta \Vdash^{\mathrm{LF}} \sigma' : \Gamma'$ such that $|\mathcal{D}_1|, |\mathcal{D}_2|, |\mathcal{D}_3|, |\mathcal{D}_4| \leq |\mathcal{D}|$.

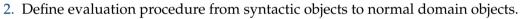
And similarly for other judgments.

Part 1: Evaluation procedure

- 1. Define semantics as an untyped domain. All objects in the domain are in canonical(-ish) form.
 - Neutral and normal forms ensure no β -reduction.
 - Reflection and reification ensure no η -expansion.

Part 1: Evaluation procedure

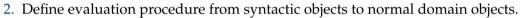
- 1. Define semantics as an untyped domain. All objects in the domain are in canonical(-ish) form.
 - Neutral and normal forms ensure no β -reduction.
 - Reflection and reification ensure no η -expansion.



3. Define readback procedure from canonical domain objects to (canonical) syntactic objects.

Part 1: Evaluation procedure

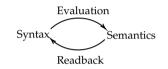
- 1. Define semantics as an untyped domain. All objects in the domain are in canonical(-ish) form.
 - Neutral and normal forms ensure no β -reduction.
 - Reflection and reification ensure no η -expansion.



3. Define readback procedure from canonical domain objects to (canonical) syntactic objects.

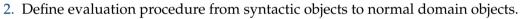
Part 2: Proving correctness

4. Model typing and equality in the domain with partial equivalence relations (PER model).



Part 1: Evaluation procedure

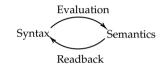
- 1. Define semantics as an untyped domain. All objects in the domain are in canonical(-ish) form.
 - Neutral and normal forms ensure no β -reduction.
 - Reflection and reification ensure no η -expansion.



3. Define readback procedure from canonical domain objects to (canonical) syntactic objects.

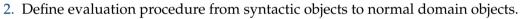
Part 2: Proving correctness

- 4. Model typing and equality in the domain with partial equivalence relations (PER model).
- 5. Prove that syntactically equal objects evaluate to PER-related domain objects.
- 6. Prove that PER-related domain objects readback to the same thing.
- 7. Conclude syntactically equal objects have the same normal form (Completeness).



Part 1: Evaluation procedure

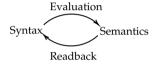
- 1. Define semantics as an untyped domain. All objects in the domain are in canonical(-ish) form.
 - Neutral and normal forms ensure no β -reduction.
 - Reflection and reification ensure no η -expansion.



3. Define readback procedure from canonical domain objects to (canonical) syntactic objects.

Part 2: Proving correctness

- 4. Model typing and equality in the domain with partial equivalence relations (PER model).
- 5. Prove that syntactically equal objects evaluate to PER-related domain objects.
- 6. Prove that PER-related domain objects readback to the same thing.
- 7. Conclude syntactically equal objects have the same normal form (Completeness).
- 8. Prove that well-formed objects are syntactically equal to their normal form (Soundness).



NORMALIZATION BY EVALUATION DOMAIN

Sorts	S	::=	type kind
Constants	\mathbf{c}, \mathbf{a}	::=	tp base arr tm lam app
de Bruijn levels	ℓ	::=	$n \mid n + o$ where $n \ge 1$
Neutral expressions	e,f	::=	$v_\ell \mid e \: d \mid$ unbox h with $ ho$
Normal expressions	m, a, k	::=	$\uparrow^{a} e \mid s \mid (\Lambda M)\tau; \rho \mid (\Pi a.A)\tau; \rho \mid \mathbf{c} \mid \mathbf{arr} \ a \mid \mathbf{arr} \ a \ b$
			tm <i>a</i> lam <i>a</i> lam <i>a b</i> lam <i>a b m</i>
			app a app a b app a b m app a b m n
Canonical expressions	d	::=	$\downarrow^a m$
Contexts	γ	::=	$\cdot \mid V_i \mid \gamma, a$
Erased contexts	$\hat{\gamma}$	=	$\cdot, n \mid V_i, n$
Environment	ρ	::=	$\cdot \mid id_{V_i} \mid ho, m$
Meta-types	и	::=	$\#\llbracket (\gamma \vdash A)\tau \rrbracket \mid \llbracket (\gamma \vdash A)\tau \rrbracket \mid ctx$
Meta-neutrals	h	::=	V_i
Meta-normals	С	::=	$\uparrow^u h \mid box(\hat{\gamma} \vdash M) \tau \mid \gamma$
Meta-canonicals	d	::=	$\downarrow^{u} c$
Meta-environments	au	::=	$\cdot \mid au, c$

Box and unbox

- $\llbracket C \rrbracket_{\mathcal{M}}(\tau) \searrow c$ Meta-term *C* evaluates to *c* in meta-environment τ .
- $\llbracket U \rrbracket_{\mathcal{M}}^t(\tau) \searrow u
 brace$ Meta-type *U* evaluates to *u* in meta-environment τ .

$$\frac{\llbracket \hat{\Gamma} \rrbracket_{\mathrm{LF}}^{\hat{c}}(\tau) \searrow \hat{\gamma}}{\llbracket [\hat{\Gamma} \vdash M] \rrbracket_{\mathcal{M}}(\tau) \searrow \mathsf{box}(\hat{\gamma} \vdash M) \tau} \qquad \frac{\llbracket \Gamma \rrbracket_{\mathrm{LF}}^{c}(\tau) \searrow \gamma}{\llbracket [\Gamma \vdash A] \rrbracket_{\mathcal{M}}^{t}(\tau) \searrow \llbracket (\gamma \vdash A) \tau]}$$

Box and unbox

- $\llbracket C \rrbracket_{\mathcal{M}}(\tau) \searrow c$ Meta-term *C* evaluates to *c* in meta-environment τ .
- $\llbracket U \rrbracket_{\mathcal{M}}^{t}(\tau) \searrow u
 brace$ Meta-type *U* evaluates to *u* in meta-environment τ .

$$\frac{[\![\hat{\Gamma}]\!]_{\mathrm{LF}}^{\hat{c}}(\tau)\searrow\hat{\gamma}}{[\![\hat{\Gamma}\vdash M]\!]_{\mathcal{M}}(\tau)\searrow\operatorname{\mathsf{box}}(\hat{\gamma}\vdash M)\tau} \qquad \frac{[\![\Gamma]\!]_{\mathrm{LF}}^{c}(\tau)\searrow\gamma}{[\![\Gamma\vdash A]\!]_{\mathcal{M}}^{t}(\tau)\searrow[\![(\gamma\vdash A)\tau]\!]}$$

 $\blacktriangleright \left[\mathbb{E}_{LF}(\tau; \rho) \searrow m \right] - LF \text{ expression } M \text{ evaluates to } m \text{ in environment } \tau; \rho$

• unbox $\cdot c$ with $\rho \searrow m$ – Unboxing *c* with environment ρ yields *m*.

$$\frac{\llbracket C \rrbracket_{\mathcal{M}}(\tau) \searrow c \quad \llbracket \sigma \rrbracket_{\mathrm{LF}}^{s}(\tau;\rho) \searrow \rho' \quad \text{unbox} \cdot c \text{ with } \rho' \searrow m}{\llbracket \lfloor C \rfloor_{\sigma} \rrbracket_{\mathrm{LF}}(\tau;\rho) \searrow m}$$

$$\frac{\llbracket M \rrbracket_{\mathrm{LF}}(\tau;\rho) \searrow m}{\text{unbox} \cdot \mathrm{box}(\hat{\gamma} \vdash M)\tau \text{ with } \rho \searrow m} \quad \frac{\llbracket A \rrbracket_{\mathrm{LF}}(\tau;\rho) \searrow a}{\text{unbox} \cdot (\uparrow^{\llbracket (\gamma \vdash A)\tau} \rrbracket h) \text{ with } \rho \searrow \uparrow^{a} (\text{unbox} h \text{ with } \rho)}$$

Contexts

• $\llbracket \Gamma \rrbracket_{LF}^{c}(\tau) \searrow \gamma
ight]$ – LF context Γ evaluates to γ in meta-environment τ .

$$\frac{[\![\theta]\!]_{\mathcal{M}}^{s}(\tau)\searrow\tau'}{[\![\nabla]\!]_{\mathrm{LF}}^{c}(\tau)\searrow\tau(i)} \qquad \frac{[\![\theta]\!]_{\mathcal{M}}^{s}(\tau)\searrow\tau'}{[\![\theta]\!]_{\mathrm{LF}}^{c}(\tau)\searrow\gamma}$$

Contexts

• $\left\| \Gamma \right\|_{LF}^{c}(\tau) \searrow \gamma \right|$ – LF context Γ evaluates to γ in meta-environment τ .

 $\frac{[\![\boldsymbol{\Gamma}]\!]_{\mathrm{LF}}^{c}(\boldsymbol{\tau}) \searrow \boldsymbol{\tau}}{[\![\boldsymbol{X}_{i}]\!]_{\mathrm{LF}}^{c}(\boldsymbol{\tau}) \searrow \boldsymbol{\tau}(i)} \qquad \frac{[\![\boldsymbol{\theta}]\!]_{\mathcal{M}}^{s}(\boldsymbol{\tau}) \searrow \boldsymbol{\tau}' \quad [\![\boldsymbol{\Gamma}]\!]_{\mathrm{LF}}^{c}(\boldsymbol{\tau}') \searrow \boldsymbol{\gamma}}{[\![[\![\boldsymbol{\theta}]\!] \boldsymbol{\Gamma}]\!]_{\mathrm{LF}}^{c}(\boldsymbol{\tau}) \searrow \boldsymbol{\gamma}} \\
\frac{[\![\boldsymbol{\Gamma}]\!]_{\mathrm{LF}}^{c}(\boldsymbol{\tau}) \searrow \boldsymbol{\gamma} \quad [\![\boldsymbol{A}]\!]_{\mathrm{LF}}(\boldsymbol{\tau}; ?) \searrow \boldsymbol{a}}{[\![\boldsymbol{\Gamma} , \boldsymbol{A}]\!]_{\mathrm{LF}}^{c}(\boldsymbol{\tau}) \searrow \boldsymbol{\gamma}, \boldsymbol{a}}$

Contexts

 $\left[\Gamma \right]_{LF}^{c}(\tau) \searrow \gamma - LF \text{ context } \Gamma \text{ evaluates to } \gamma \text{ in meta-environment } \tau.$

$$\frac{[\![\Pi]]_{LF}^{c}(\tau)\searrow \tau}{[\![\Pi]]_{LF}^{c}(\tau)\searrow \tau(i)} \qquad \frac{[\![\Pi]]_{\mathcal{M}}^{s}(\tau)\searrow \tau' \quad [\![\Pi]]_{LF}^{c}(\tau)\searrow \gamma}{[\![\Pi]]_{LF}^{c}(\tau)\searrow \gamma} \\
\frac{[\![\Pi]]_{LF}^{c}(\tau)\searrow \gamma \quad [\![A]]_{LF}(\tau;\rho_{\gamma}^{*})\searrow a}{[\![\Pi,A]]_{LF}^{c}(\tau)\searrow \gamma,a}$$

• Initial LF environment for γ , denoted ρ_{γ}^* :

Contexts

 $\left[\Gamma \right]_{LF}^{c}(\tau) \searrow \gamma - LF \text{ context } \Gamma \text{ evaluates to } \gamma \text{ in meta-environment } \tau.$

$$\frac{[\![\Pi]]_{LF}^{c}(\tau)\searrow \tau}{[\![\Pi]]_{LF}^{c}(\tau)\searrow \tau(i)} \qquad \frac{[\![\Pi]]_{\mathcal{M}}^{s}(\tau)\searrow \tau' \quad [\![\Pi]]_{LF}^{c}(\tau')\searrow \gamma}{[\![\Pi]]_{LF}^{c}(\tau)\searrow \gamma} \\
\frac{[\![\Pi]]_{LF}^{c}(\tau)\searrow \gamma \quad [\![A]]_{LF}(\tau;\rho_{\gamma}^{*})\searrow a}{[\![\Pi,A]]_{LF}^{c}(\tau)\searrow \gamma,a}$$

• Initial LF environment for γ , denoted ρ_{γ}^* :

For syntactic contexts: $\rho_{\Delta;\Gamma}^* := \rho_{\gamma}^*$, where $\llbracket \Gamma \rrbracket_{L^F}^c(\tau_{\Delta}^*) \searrow \gamma$.

Erased contexts

 $\left\| \left[\hat{\Gamma} \right]_{LF}^{\hat{c}}(\tau) \searrow \hat{\gamma} \right\| - \text{Erased context } \hat{\Gamma} \text{ evaluates to } \hat{\gamma} \text{ in meta-environment } \tau.$

$$\frac{(\tau(i))^{-} = \cdot, m}{\llbracket \cdot, n \rrbracket_{\mathrm{LF}}^{\hat{c}}(\tau) \searrow \cdot, n} \qquad \frac{(\tau(i))^{-} = \cdot, m}{\llbracket X_{i}, n \rrbracket_{\mathrm{LF}}^{\hat{c}}(\tau) \searrow \cdot, m+n} \qquad \frac{(\tau(i))^{-} = V_{j}, m}{\llbracket X_{i}, n \rrbracket_{\mathrm{LF}}^{\hat{c}}(\tau) \searrow V_{j}, m+n}$$

Erased contexts

 $\left| \left[\hat{\Gamma} \right]_{LF}^{\hat{c}}(\tau) \searrow \hat{\gamma} \right| - \text{Erased context } \hat{\Gamma} \text{ evaluates to } \hat{\gamma} \text{ in meta-environment } \tau.$

$$\frac{(\tau(i))^{-} = \cdot, m}{\llbracket \cdot, n \rrbracket_{\mathrm{LF}}^{\hat{c}}(\tau) \searrow \cdot, n} \qquad \frac{(\tau(i))^{-} = \cdot, m}{\llbracket X_{i}, n \rrbracket_{\mathrm{LF}}^{\hat{c}}(\tau) \searrow \cdot, m+n} \qquad \frac{(\tau(i))^{-} = V_{j}, m}{\llbracket X_{i}, n \rrbracket_{\mathrm{LF}}^{\hat{c}}(\tau) \searrow V_{j}, m+n}$$

LF substitutions

 $\blacktriangleright \left[\left[\sigma \right]_{LF}^{s}(\tau; \rho) \searrow \rho' \right] - LF \text{ substitution } \sigma \text{ evaluates to } \rho' \text{ in environments } \tau; \rho.$

$$[\!\!\cdot]\!]_{\mathrm{LF}}^{s}(\tau;\rho)\searrow \cdot \qquad \overline{[\!\![\mathrm{id}_{\widehat{\Gamma}}]\!]_{\mathrm{LF}}^{s}(\tau;\rho)\searrow \rho}$$

Note. Domain identity environments id_{V_i} only occur in initial environments.

Box and unbox

 $|\mathsf{R}_{k}^{\mathsf{Dn}_{\mathcal{M}}^{\mathsf{n}}}(c) \searrow C| - \text{Domain canonical meta-term } c \text{ readbacks to } C.$

$$\frac{\mathsf{R}_{k}^{\mathsf{Ctx}_{\mathrm{LF}}}(\gamma)\searrow\Gamma\quad(\Gamma)^{-}=\widehat{\Gamma}\quad\llbracket A\rrbracket_{\mathrm{LF}}(\tau;\rho_{\gamma}^{*})\searrow a\quad\mathsf{unbox}\cdot c\;\mathsf{with}\;\rho_{\gamma}^{*}\searrow m\quad\mathsf{R}_{k,|\gamma|}^{\mathsf{D}_{\mathrm{LF}}^{\mathsf{nf}}}(\downarrow^{a}m)\searrow M}{\mathsf{R}_{k}^{\mathsf{D}_{\mathcal{M}}^{\mathsf{nf}}}(\downarrow^{\llbracket(\gamma\vdash A)\tau\rrbracket}c)\searrow\lceil\widehat{\Gamma}\vdash M\rceil}$$

Box and unbox

 $\blacktriangleright \left| \mathsf{R}_{k}^{\mathsf{Dn}_{\mathcal{M}}^{\mathsf{n}}}(c) \searrow C \right| - \text{Domain canonical meta-term } c \text{ readbacks to } C.$

$$\frac{\mathsf{R}_{k}^{\mathsf{Ctx}_{\mathrm{LF}}}(\gamma) \searrow \Gamma \quad (\Gamma)^{-} = \hat{\Gamma} \quad \llbracket A \rrbracket_{\mathrm{LF}}(\tau; \rho_{\gamma}^{*}) \searrow a \quad \mathsf{unbox} \cdot c \text{ with } \rho_{\gamma}^{*} \searrow m \quad \mathsf{R}_{k,|\gamma|}^{\mathsf{Dnf}}(\downarrow^{a} m) \searrow M}{\mathsf{R}_{k}^{\mathsf{Dnf}}(\downarrow^{\mathbb{T}}(\gamma \vdash A)\tau \rrbracket c) \searrow \lceil \hat{\Gamma} \vdash M \rceil}$$

• $\mathsf{R}_{k,l}^{\mathsf{D}_{\mathrm{LF}}^{\mathsf{ne}}}(e) \searrow E$ – Domain neutral expression *e* readbacks to *E*.

$$\frac{\mathsf{R}_{k}^{\mathsf{Dne}}(h)\searrow E \quad \mathsf{R}_{k,l}^{\mathsf{Env}_{\mathsf{LF}}}(\rho)\searrow\sigma}{\mathsf{R}_{k,l}^{\mathsf{Dne}}(\mathsf{unbox}\ h\ \mathsf{with}\ \rho)\searrow \lfloor E \rfloor_{\sigma}}$$

Contexts and erased contexts

 $\mathbf{F}_{k}^{\mathsf{Ctx}_{\mathsf{LF}}}(\gamma) \searrow \Gamma - \text{Normal LF domain context } \gamma \text{ readbacks to } \Gamma.$

$$\frac{}{\mathsf{R}_{k}^{\mathsf{Ctx}_{\mathrm{LF}}}(\cdot)\searrow \cdot} \qquad \frac{}{\mathsf{R}_{k}^{\mathsf{Ctx}_{\mathrm{LF}}}(V_{i})\searrow X_{k-i+1}} \qquad \frac{\mathsf{R}_{k}^{\mathsf{Ctx}_{\mathrm{LF}}}(\gamma)\searrow \Gamma \quad \mathsf{R}_{k,|\gamma|+1}^{\mathsf{Dn}_{\mathrm{LF}}^{\mathsf{n}}}(a)\searrow A}{\mathsf{R}_{k}^{\mathsf{Ctx}_{\mathrm{LF}}}(\gamma,a)\searrow \Gamma, A}$$

Dnf

Contexts and erased contexts

$$\blacktriangleright \left| \mathsf{R}_{k}^{\mathsf{Ctx}_{\mathsf{LF}}}(\gamma) \searrow \Gamma \right| - \text{Normal LF domain context } \gamma \text{ readbacks to } \Gamma.$$

$$\overline{\mathsf{R}_{k}^{\mathsf{Ctx}_{\mathsf{LF}}}(\cdot)\searrow\cdot} \quad \overline{\mathsf{R}_{k}^{\mathsf{Ctx}_{\mathsf{LF}}}(V_{i})\searrow X_{k-i+1}} \qquad \frac{\mathsf{R}_{k}^{\mathsf{Ctx}_{\mathsf{LF}}}(\gamma)\searrow\Gamma}{\mathsf{R}_{k}^{\mathsf{Ctx}_{\mathsf{LF}}}(\gamma,a)\searrow\Gamma,A}$$

$$\blacktriangleright \overline{\mathsf{R}_{k}^{\widehat{\mathsf{Ctx}}_{\mathsf{LF}}}(\hat{\gamma})\searrow\hat{\Gamma}} - \text{Erased context }\hat{\gamma} \text{ readbacks to }\hat{\Gamma}.$$

$$\mathsf{R}_{k}^{\widehat{\mathsf{Ctx}}_{\mathsf{LF}}}(\cdot,n)\searrow \cdot,n \qquad \mathsf{R}_{k}^{\widehat{\mathsf{Ctx}}_{\mathsf{LF}}}(V_{i},n)\searrow X_{k-i+1},n$$

Contexts and erased contexts

$$\blacktriangleright \left| \mathsf{R}_{k}^{\mathsf{Ctx}_{\mathsf{LF}}}(\gamma) \searrow \Gamma \right| - \text{Normal LF domain context } \gamma \text{ readbacks to } \Gamma.$$

$$\overline{\mathsf{R}_{k}^{\mathsf{Ctx}_{\mathrm{LF}}}(\cdot)\searrow \cdot} \qquad \overline{\mathsf{R}_{k}^{\mathsf{Ctx}_{\mathrm{LF}}}(V_{i})\searrow X_{k-i+1}}$$

$$\frac{\mathsf{R}_{k}^{\mathsf{Ctx_{LF}}}(\gamma)\searrow\Gamma\quad\mathsf{R}_{k,|\gamma|+1}^{\mathsf{D}_{LF}^{\mathsf{nf}}}(a)\searrow A}{\mathsf{R}_{k}^{\mathsf{Ctx_{LF}}}(\gamma,a)\searrow\Gamma,A}$$

 $|\mathsf{R}_{k}^{\widehat{\mathsf{Ctx}}_{\mathsf{LF}}}(\hat{\gamma}) \searrow \hat{\Gamma}| - \text{Erased context } \hat{\gamma} \text{ readbacks to } \hat{\Gamma}.$

$$\overline{\mathsf{R}_{k}^{\widehat{\mathsf{Ctx}}_{\mathsf{LF}}}(\cdot,n)\searrow \cdot,n} \qquad \overline{\mathsf{R}_{k}^{\widehat{\mathsf{Ctx}}_{\mathsf{LF}}}(V_{i},n)\searrow X_{k-i+1},n}$$

Environments

•
$$\mathbf{R}_{k,l}^{\mathsf{Env}_{LF}}(\rho) \searrow \sigma$$
 – Environment ρ readbacks to substitution σ .

$$\mathsf{R}^{\mathsf{Env}_{\mathrm{LF}}}_{k,l}(\mathsf{id}_{V_i})\searrow \mathsf{id}_{(X_{k-i+1},0)}$$

NORMALIZATION BY EVALUATION PROPERTIES OF EVALUATION AND READBACK

Theorem (Determinacy)

All the evaluation and readback relations are deterministic in their last parameter. Precisely:

1. If
$$[\![M]\!]_{LF}(\tau; \rho) \searrow m$$
 and $[\![M]\!]_{LF}(\tau; \rho) \searrow m'$, then $m = m'$.
2. If $[\![\Gamma]\!]_{LF}^{c}(\tau) \searrow \gamma$ and $[\![\Gamma]\!]_{LF}^{c}(\tau) \searrow \gamma'$, then $\gamma = \gamma'$.
3. If $\mathsf{R}_{k,l}^{\mathsf{D}_{LF}^{\mathsf{nf}}}(m) \searrow M$ and $\mathsf{R}_{k,l}^{\mathsf{D}_{LF}^{\mathsf{nf}}}(m) \searrow M'$, then $M = M'$.
9. If $\mathsf{R}_{k}^{\mathsf{Ctx}_{LF}}(\gamma) \searrow \Gamma$ and $\mathsf{R}_{k}^{\mathsf{Ctx}_{LF}}(\gamma) \searrow \Gamma'$, then $\Gamma = \Gamma'$.
.

In other words, evaluation and readback are partial functions.

NORMALIZATION BY EVALUATION PROPERTIES OF EVALUATION AND READBACK

Theorem (Determinacy)

All the evaluation and readback relations are deterministic in their last parameter. Precisely:

1. If
$$[\![M]\!]_{LF}(\tau; \rho) \searrow m$$
 and $[\![M]\!]_{LF}(\tau; \rho) \searrow m'$, then $m = m'$.
2. If $[\![\Gamma]\!]_{LF}^{c}(\tau) \searrow \gamma$ and $[\![\Gamma]\!]_{LF}^{c}(\tau) \searrow \gamma'$, then $\gamma = \gamma'$.
3. If $\mathsf{R}_{k,l}^{\mathsf{D}_{LF}^{\mathsf{nf}}}(m) \searrow M$ and $\mathsf{R}_{k,l}^{\mathsf{D}_{LF}^{\mathsf{nf}}}(m) \searrow M'$, then $M = M'$.
9. If $\mathsf{R}_{k}^{\mathsf{Ctx}_{LF}}(\gamma) \searrow \Gamma$ and $\mathsf{R}_{k}^{\mathsf{Ctx}_{LF}}(\gamma) \searrow \Gamma'$, then $\Gamma = \Gamma'$.
 \vdots

In other words, evaluation and readback are partial functions. \Rightarrow We can now define normalization (partial) functions:

$$\mathsf{nbe}_{\Delta;\Gamma}^{A}(M) := \mathsf{R}_{k,l}^{\mathsf{D}_{\mathrm{LF}}^{\mathsf{nf}}} \left(\downarrow^{\llbracket A \rrbracket_{\mathrm{LF}}(\tau_{\Delta}^{*};\rho_{\Delta;\Gamma}^{*})} \llbracket M \rrbracket_{\mathrm{LF}}(\tau_{\Delta}^{*};\rho_{\Delta;\Gamma}^{*}) \right)$$

Recap

- Extended CLF with first-class contexts and context variables.
- Extended Abel and Pientka [2010]'s explicit substitution calculus to our version of CLF.

Recap

- Extended CLF with first-class contexts and context variables.
- Extended Abel and Pientka [2010]'s explicit substitution calculus to our version of CLF.
- Defined semantic domain and normalization procedure for CLF.

Recap

- Extended CLF with first-class contexts and context variables.
- Extended Abel and Pientka [2010]'s explicit substitution calculus to our version of CLF.
- ▶ Defined semantic domain and normalization procedure for CLF.

Next time

- ► Define PER model.
- Overview of completeness proof.

Recap

- Extended CLF with first-class contexts and context variables.
- Extended Abel and Pientka [2010]'s explicit substitution calculus to our version of CLF.
- ▶ Defined semantic domain and normalization procedure for CLF.

Next time

- ► Define PER model.
- Overview of completeness proof.

Future work

Prove soundness of normalization.

Recap

- Extended CLF with first-class contexts and context variables.
- Extended Abel and Pientka [2010]'s explicit substitution calculus to our version of CLF.
- Defined semantic domain and normalization procedure for CLF.

Next time

- Define PER model.
- Overview of completeness proof.

Future work

- Prove soundness of normalization.
- Scale up from CLF to COCON by extending the meta-level to MLTT.
 - Universe hierarchy Dependent function Recursion over LF objects
- Add first-class substitutions and substitution variables.

- Andreas Abel and Brigitte Pientka. Explicit substitutions for contextual type theory. In Karl Crary and Marino Miculan, editors, *Proceedings 5th International Workshop on Logical Frameworks and Meta-languages: Theory and Practice, LFMTP 2010, Edinburgh, UK, 14th July 2010,* volume 34 of *EPTCS*, pages 5–20, 2010. doi: 10.4204/EPTCS.34.3. URL https://doi.org/10.4204/EPTCS.34.3.
- Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by evaluation for Martin-Löf Type Theory with typed equality judgements. In *lics07*, pages 3–12. ieee, 2007.
- Jason Z. S. Hu, Junyoung Jang, and Brigitte Pientka. Normalization by evaluation for modal dependent type theory. *J. Funct. Program.*, 33, 2023. doi: 10.1017/S0956796823000060. URL https://doi.org/10.1017/s0956796823000060.
- Brigitte Pientka, David Thibodeau, Andreas Abel, Francisco Ferreira, and Rébecca Zucchini. A type theory for defining logics and proofs. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019. doi: 10.1109/LICS.2019.8785683. URL https://doi.org/10.1109/LICS.2019.8785683.