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How does Haskell Infer Types?



Non-HM Features of Haskell

Constrained polymorphism:

1 member :: ∀a. Eq a => a -> [a] -> Bool

Indexed types:

1 data R (a :: *) where

2 RInt :: Int -> R Int

3 RBool :: Bool -> R Bool

Type families:

1 type family F :: * -> *

2 type instance F [a] = F a

3 type instance F Bool = Int
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Type Classes are Ambiguous

1 show :: forall a. Show a => a -> String

2 read :: forall a. Show a => String -> a

3

4 flop :: String -> String

5 flop s = show (read s)

There’s clearly a Show α constraint of some kind

but there’s no way to pick α!

We must reject such programs.
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Type Families Mess With Type Equality

1 type family Elem c :: *

2 class HasElem c where

3 first :: c -> Elem c

4

5 type instance Elem [a] = a

6 instance HasElem [a] where

7 first = head

8

9 type instance Elem (a,b) = a

10 instance HasElem (a,b) where

11 first = fst

12

13 exf :: (Elem a ~ Elem b, Eq a) => a -> b -> Bool

14 exf x y = first x == first y

15

16 -- exf [1] (1, False) is safe!
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GADTs

GADTs in Haskell can

have local assumptions

be existential

be indexed

1 data Ex a where

2 ExEq :: forall b. Eq b => b -> Ex Bool

3 ExPl :: forall b. Num b => b -> Ex Int

4

5 ex :: Ex a -> a

6 ex (ExEq x) = x == x -- returns a Bool

7 ex (ExPl y) = y + 1 -- returns an Int
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Indexing is a Local Assumption

Natural representation of indexing via local assumption:

1 data R a where

2 RInt :: Int -> R Int

3 RBool :: Bool -> R Bool

1 data R a where

2 RInt :: (a ∼ Int) => a -> R a

3 RBool :: (a ∼ Bool) => a -> R a
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GADTs and Inconsistency

Should we accept this program?

1 data R a where

2 R1 :: (a ~ Int) => a -> R a

3 R2 :: (a ~ Bool) => a -> R a

4

5 foo :: R Int -> Int

6 foo (R1 y) = y

7 foo (R2 y) = False
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Problems

Type Classes: tractable. [See HM(X)]

Type Families: type equality is non-structural!

GADTs: local assumptions – constraints are scoped

Many examples will follow!
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Indexing Loses Principal Types

1 data T a where

2 T1 :: Int -> T Bool

3 T2 :: T a

4

5 test (T1 n) _ = n > 0

6 test T2 r = r

test :: ∀a. T a -> Bool -> Bool

or
test :: ∀a. T a -> a -> a

1 test2 (T1 n) _ = n > 0

2 test2 T2 r = not r
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Classes + Annotations Lose Prinicipality

1 class Foo a b where foo :: a -> b -> Int

2 instance Foo Int b

3 instance Foo a b => Foo [a] b

4

5 g y = let h :: forall c. c -> Int

6 h x = foo y x

7 in h True

g can have any of these types, but has no prinicpal type:

g :: Int -> Int

g :: [Int] -> Int

g :: [[Int]] -> Int

g :: ...

Existential data types can replace h in the example.

How does Haskell Infer Types?



TCs + Constrained Data also a Problem

1 class C a

2 class B a b where op :: a -> b

3 instance C a => B a [a]

4

5 data R a where

6 MkR :: C a => a -> T a -- not indexed

7

8 -- k :: ∀ab. B a b => R a -> b

9 -- k :: ∀a . R a -> [a]

10 k (MkR x) = op x
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Failed Attempt

Quantification over constraints can fix the type system to
restore principal types:

test :: ∀ab. (a ∼ Bool ⊃ b ∼ Bool) => T a -> b -> b

g :: ∀b . (∀c. Foo b c) => b -> Int

k :: ∀ab. (C a ⊃ B a b) => R a -> b

But this is undesirable:

Type checking becomes undecidable

We really did want to reject those programs!
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Our Challenge

Determine which definitions should be accepted, independently
of the constraint domain.
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Natural Type System with Local Assumptions (Syntax)

Term variables: x, y, z, f, g, h

Type variables: a, b, c

Unification variables: α, β, γ, . . .

Data constructors: K

Expressions: e

Monotypes: τ, υ ::= a | Int | T τ | F τ | . . .

Constraints: Q ::= ε | Q1 ∧Q2 | τ1 ∼ τ2 | Q(X)

Type schemes: σ ::= ∀a.Q ⇒ τ

Top-level axioms: Q ::= ε | Q ∧ Q | ∀a.Q ⇒ Q

Generated constraints: C ::= Q | C1 ∧ C2 | ∃α.(Q ⊃ C)
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Note: Data Constructor Types

Γ0 initially contains data constructor types. Shape:

K : ∀ab.Q ⇒ υ → T a

Note b (existentials) and the local assumptions!
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Natural Type System with Local Assumptions

(ν : ∀a.Q1 ⇒ υ) ∈ Γ Q ⊩ [a 7→ τ ]Q1
VarCon

Q; Γ ⊢ ν : [a 7→ τ ]υ

Q; Γ ⊢ e : τ1 Q ⊩ τ1 ∼ τ2
Eq

Q; Γ ⊢ e : τ2

Q; Γ ⊢ e1 : τ1 Q; Γ, (x : τ1) ⊢ e2 : τ2
Let

Q; Γ ⊢ let x = e1 in e2 : τ2

Q ∧Q1; Γ ⊢ e1 : τ1 a#ftv(Q,Γ)

Q; Γ, (x : ∀a.Q1 ⇒ τ1) ⊢ e2 : τ2
LetA

Q; Γ ⊢ let x :: ∀a.Q1 ⇒ τ1 = e1 in e2 : τ2
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Natural System (Case)

Q; Γ ⊢ e : T τ

ftv(Q,Γ, τ , τr)#b

Ki : ∀ab.Qi ⇒ υi → T a ∈ Γ

Q ∧ ([a 7→ τ ]Qi); Γ, (xi : [a 7→ τ ]υi) ⊢ ei : τr
Case

Q; Γ ⊢ case e of {Ki xi → ei} : τr
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Natural is Too Permissive

Can’t check principality. But it gets worse!

Recall:

1 data T a where

2 T1 :: Int -> T Bool

3 T2 :: T a

Consider:

1 fr :: a -> T a -> Bool

2 fr x y = let gr z = not x

3 in case y of

4 T1 _ -> gr ()

5 T2 -> True

Type safe?
Yes – but we should reject it! Problem: let generalization.
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Type Inference with GADTs, Informally

Consider \x -> case x of { T1 n -> n > 0 }, where

T1 : ∀a.(Bool∼ a) ⇒ Int → T a

1 make up α for whole term, βx for x

2 Learn βx ∼ T γ for some γ

3 In branch (where γ ∼ Bool), α∼ Bool

4 emit (γ ∼ Bool ⊃ α∼ Bool) as constraint

5 Solve it?

Can’t solve it – two solutions!

[α 7→ Bool]

[α 7→ γ]
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Type Inference with GADTs, Informally

What about \x -> case x of { T1 n -> n > 0; T2 -> True }?
Constraints will be:

(γ ∼ Bool ⊃ α∼ Bool) ∧ (α∼ Bool)

This one is solvable.

Idea: Treat global tyvars as skolem
under implications.

(constraints solved separately!)
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Local type variables

What about local tyvars under implications?
Let

T3 : ∀a.(Bool∼ a) ⇒ [Int] → T a

null : ∀d.[d] → Bool

and consider \x -> case x of { T3 n -> null n }

We conclude

γ ∼ Bool ⊃ (α∼ Bool ∧ δ ∼ Int)

But δ is entirely local, so no risk to unify [δ 7→ Int]!

∃δ.γ ∼ Bool ⊃ (α∼ Bool ∧ δ ∼ Int)

We say δ is “touchable.”
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Seems Conservative, Actually Robust

Conservative:

Approach can’t solve (γ ∼ Bool ⊃ α∼ Int).

But the solution [α 7→ Int] is unique!

Constraints are all solved in context of Q.

What if F Bool∼ Int ∈ Q?

New solution: [α 7→ F γ]

So we really should not solve above example.

Really is conservative, though:

Cannot solve (ε ⊃ α∼ Int)...

but even in an open world there can only be one solution.
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Constraint Generation (Let)

Γ |−▶ e : τ ⇝ C

· · ·

Γ |−▶ e1 : τ1 ⇝ C1 Γ, (x : τ1) |−▶ e2 : τ2 ⇝ C2
Let

Γ |−▶ let x = e1 in e2 : τ2 ⇝ C1 ∧ C2

Γ |−▶ e1 : τ ⇝ C1 Γ, (x : τ) |−▶ e2 : τ2 ⇝ C2
LetA

Γ |−▶ let x :: τ1 = e1 in e2 : τ2 ⇝ C1 ∧ C2 ∧ τ ∼ τ1

σ1 = ∀a.Q1 ⇒ τ1 Q1 ̸= ε or a ̸= ε

Γ |−▶ e1 : τ ⇝ C β = fuv(τ, C)− fuv(Γ)

C1 = ∃β.(Q1 ⊃ C ∧ τ ∼ τ1)
Γ, (x : σ1) |−▶ e2 : τ2 ⇝ C2

Γ |−▶ let x :: σ1 = e1 in e2 : τ2 ⇝ C1 ∧ C2
GLetA
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Constraint Generation (Case)

Γ |−▶ e : τ ⇝ C β, γ fresh

Ki : ∀abi.Qi ⇒ υi → T a bi fresh

Γ, (xi : [a 7→ γ]υi) |−▶ ei : τi ⇝ Ci

δi = fuv(τi, Ci)− fuv(Γ, γ)

C ′
i =

{
Ci ∧ τi ∼ β if bi = ε and Qi = ε

∃δi.([a 7→ γ]Qi ⊃ Ci ∧ τi ∼ β) otherwise

Γ |−▶ case e of {Ki xi → ei} : β ⇝ C ∧ (T γ ∼ τ) ∧ (
∧

C ′
i)

Case
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Solver Signature

Q;Qgiven; atch |−▶solv Cwanted ⇝ Qresidual; θ

Q global axioms

Qgiven given constraints (no ∃)
atch touchable variables

Cwanted constraints to solve

Qresidual constraints failed to solve

θ substitution witness (dom(θ) ⊆ αtch)

How does Haskell Infer Types?



Top-level Inference Rules

Q; Γ |−▶ prog

Γ |−▶ e : υ ⇝ C

Q;Q; fuv(υ,C) |−▶solv C ∧ υ ∼ τ ⇝ ε; θ
Q; Γ, (f : ∀a.Q ⇒ τ) |−▶ prog

Q; Γ |−▶ f :: (∀a.Q ⇒ τ) = e, prog
BindA

Γ |−▶ e : τ ⇝ C Q; ε; fuv(τ, C) |−▶solv C ⇝ Q; θ
a fresh α = fuv(θτ,Q)

Q; Γ, (f : ∀a.[α 7→ a](Q ⇒ θτ)) |−▶ prog

Q; Γ |−▶ f = e, prog
Bind
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Parameterized Constraint Solver

Q;Qgiven; atch |−▶simp Q wanted ⇝ Qresidual; θ

(constraint solver for X)

Q;Qgiven; atch |−▶solv Cwanted ⇝ Qresidual; θ

Q;Qg;α |−▶simp simple[C]⇝ Qr; θ
∀(∃αi.(Qi ⊃ Ci) ∈ implic[θC]),

Q;Qg ∧Qr ∧Qi;αi |−▶solv Ci ⇝ ε ; θi

Q;Qg;α |−▶solv C ⇝ Qr; θ
Solve
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Aside: Skolem Escape Checks

Should this typecheck?

1 data Ex where

2 Ex :: forall b. b -> Ex

3

4 f = case (Ex 3) of Ex _ -> False

Only constraint will be ε ⊃ α∼ Bool . . .

but we can’t solve it, because α is skolem under implication

Since LHS doesn’t entail equalities, we could float RHS . . .

as long as we make sure that b doesn’t escape.
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What have we Achieved? (stopping point)

Seen why Haskell type inference is hard.

Established “natural” type system – accepts too many
programs.

Seen implication constraints and touchable variables

Observed OutsideIn(X) is incomplete.

Studied constraint generation + algorithm for discharging
implications.

Still to do:

Solve non-implication constraints!

“evidence”: solving constraints effects object code, so
witnesses of solution are required.

Interaction with other type system features.
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Syntactic Extensions

τ ::= . . . | F τ

Q ::= . . . | D τ

Q ::= Q | Q ∧ Q | ∀a.Q ⇒ D τ | ∀a.F ξ ∼ τ

ζ, ξ ∈ {τ | τ contains no type families}
T ::= T T | F T | T → T | tv | •
F ::= F T
D ::= D T
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Solving Equality Constraints is Tricky!

Consider:

1 type instance F [Int] = Int

2 type instance G [a] = Bool

3

4 -- Assume g :: forall b. b -> G b

5

6 f :: forall a. (a ~ [F a]) => a -> Bool

7 f x = g x

1 G a∼ Bool

2 a∼ [F a] given =⇒ G [F a]∼ Bool

3 Discharge with axiom for G.

But step 2 could repeated forever!
Even worse: how to use givens like F (G a)∼G a?
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Our Goal

See importance of order insensitivity

intuitively understand the simplifier

Full details of the solver are the subject of nearly half the
paper. I’d encourage you to read it if you’re interested, but it’s
way more than I want to cover here.
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What are we simplifying?

Recall the signature:

Q;Qgiven; atch |−▶simp Qwanted ⇝ Qresidual; θ

Form “state quadruple” ⟨α,φ,Qg, Qw⟩.
Apply rules to rewrite this to equivalent tuples.

Attempt to discharge non-subst equalities in Qw.

Any remaining non-subst equalities in φQw will be Qr.

Form θ from remaining subst equalities in φQw.

Why is Qg in the state? Consider

F ξ ∼ ζ1 ∧ F ξ ∼ ζ2

Rewriting Qg is only way to extract ζ1 ∼ ζ2. Other reasons too.
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Canonical Form (CF)

Core concept, especially for reasoning about termination!
Primarily concerned with eliminating type families.

tv ∼ ξ

F ξ ∼ ζ

D ξ

Property: type family may only be at head.
Property: type family may only be on the left.

How does Haskell Infer Types?



Types of Rewrites

1 Canonicalize: rewrite g or w constraint towards CF (16)

2 Interact: simplify a g or w constraint using another (12)

3 Simplify: rewrite w constraint using g constraint (6)

4 Top-level reaction: rewrite w constraint using axiom (4)

Order-insensitivity means any of the 38 rules can be applied at
any time without changing the final solution.
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Canonicalization

canon[ℓ] ( Q1 ) = {β, φ,Q2}⊥

Contains all rules from original HM system except Elim:

canon[ℓ](τ ∼ τ) = {ε, ε, ε}
canon[ℓ](T τ1 ∼ T τ2) = {ε, ε,

∧
τ1 ∼ τ2}

An orient rule (exact ordering not important)

Two error cases (mismatched constructor, occurs check)

Also contains 6 “flattening” rules, such as

canon[w](F[G ξ]∼ τ) = {β, ε,F[β]∼ τ ∧G ξ ∼ β}

One per T,F,D and per g, w.
In the g case, we must justify the flattening by adding it to φ.
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Binary Interaction

Transform two canonical g or w constraints to simpler pair.
Example: tv∼ ξ1 ∧ tv∼ ξ2 are not “subst equalities” because the
LHS is the same type variable. Rewrite to

tv ∼ ξ1 ∧ ξ1 ∼ ξ2

Now they are subst equalities (in suitable Q).

Other rules:

use tv ∼ ξ to rewrite tv in second constraint (3)

Pair of equalities for F ξ (seen before)

Delete one of D ξ ∧ D ξ
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Simplification

Like the binary interaction rules, except directional.
Two key differences:

1 Simplifying wanted tv ∼ ξ. What could be simpler?

If given is also tv′ ∼ ζ, can apply it as subst . . .
But what if given is type family equality or dict constraint?
Should not create new “flattening wanted” – more work!
Must not create new givens – no justification!

2 Pair of matching type class constraints discharges the
wanted one.
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Top-level Reactions

Straightforward: apply matching type family / instance axioms.
One catch: if reacting given type class constraint, and have
matching instance axiom, this should be an error. Consider:

1 class D a where

2 d :: a -> Bool

3 instance C a => D [a] where ...

4

5 f :: forall a. D [a] => [a] -> Bool

6 f x = d x

Discharge d with local evidence or global?

Simplest answer: don’t answer!

GHC answer: very complicated instance resolution

Applied at simplifying class constraints + here
>12 pages of docs to describe
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Conclusion

Additional achievement: solve non-implication constraints!
Takeaways:

Type inference is hard

Complete type inference is (literally) impossible

Type family can encode addition, lead to looping
Settle for knowing algorithm is sound and principal

Consider not generalizing let in your systems

Solving non-structural equalities is hard

Carefully crafted rewrite systems can do a lot of work!
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