
MULTI-LANGUAGE SEMANTICS

Antoine Gaulin

McGill University

November 26, 2024

INTRODUCTION

We want to assign meaning to programs from multiple languages simultaneously.

Applications

▶ Interoperability
Modern software are written in multiple languages that are allowed to interact.

▶ Compiler verification
Compilers transform programs in a sequence of intermediate language.

Challenges

▶ Different languages have different features, providing different safety guarantees.
• Type hierarchy (simple, dependent, polymorphic).
• Substructural rules.
• Effects.

How to ensure each language’s safety remains in the presence of interoperability?
▶ How to ensure the semantics of input and output programs match?

MULTI-LANGUAGE SEMANTICS 1 / 11

INTRODUCTION

We want to assign meaning to programs from multiple languages simultaneously.

Applications

▶ Interoperability
Modern software are written in multiple languages that are allowed to interact.

▶ Compiler verification
Compilers transform programs in a sequence of intermediate language.

Challenges

▶ Different languages have different features, providing different safety guarantees.
• Type hierarchy (simple, dependent, polymorphic).
• Substructural rules.
• Effects.

How to ensure each language’s safety remains in the presence of interoperability?

▶ How to ensure the semantics of input and output programs match?

MULTI-LANGUAGE SEMANTICS 1 / 11

INTRODUCTION

We want to assign meaning to programs from multiple languages simultaneously.

Applications

▶ Interoperability
Modern software are written in multiple languages that are allowed to interact.

▶ Compiler verification
Compilers transform programs in a sequence of intermediate language.

Challenges

▶ Different languages have different features, providing different safety guarantees.
• Type hierarchy (simple, dependent, polymorphic).
• Substructural rules.
• Effects.

How to ensure each language’s safety remains in the presence of interoperability?
▶ How to ensure the semantics of input and output programs match?

MULTI-LANGUAGE SEMANTICS 1 / 11

INTEROPERABILITY
MAIN APPROACHES

1. Unsafe
• Trust the programmer; don’t type-check.
• Run each program according to its own language’s semantics.

2. Monolithic
• Merge all the languages into a big language.
• Use complicated annotations to control what program can use what features.
• [Trifonov and Shao, 1999] Three languages with different effects.
• [Ou et al., 2004] Simply-typed and a dependently-typed language.

3. Multi-language
• Keep all languages separated.
• Interactions restricted to special boundary-crossing terms.
• [Matthews and Findler, 2009] Untyped and simply-typed languages.
• [Osera et al., 2012] Simply-types and (first-order) dependently-typed languages.
• [Scherer et al., 2018] Unrestricted and linear languages.

MULTI-LANGUAGE SEMANTICS 2 / 11

INTEROPERABILITY
MAIN APPROACHES

1. Unsafe
• Trust the programmer; don’t type-check.
• Run each program according to its own language’s semantics.

2. Monolithic
• Merge all the languages into a big language.
• Use complicated annotations to control what program can use what features.
• [Trifonov and Shao, 1999] Three languages with different effects.
• [Ou et al., 2004] Simply-typed and a dependently-typed language.

3. Multi-language
• Keep all languages separated.
• Interactions restricted to special boundary-crossing terms.
• [Matthews and Findler, 2009] Untyped and simply-typed languages.
• [Osera et al., 2012] Simply-types and (first-order) dependently-typed languages.
• [Scherer et al., 2018] Unrestricted and linear languages.

MULTI-LANGUAGE SEMANTICS 2 / 11

INTEROPERABILITY
MAIN APPROACHES

1. Unsafe
• Trust the programmer; don’t type-check.
• Run each program according to its own language’s semantics.

2. Monolithic
• Merge all the languages into a big language.
• Use complicated annotations to control what program can use what features.
• [Trifonov and Shao, 1999] Three languages with different effects.
• [Ou et al., 2004] Simply-typed and a dependently-typed language.

3. Multi-language
• Keep all languages separated.
• Interactions restricted to special boundary-crossing terms.
• [Matthews and Findler, 2009] Untyped and simply-typed languages.
• [Osera et al., 2012] Simply-types and (first-order) dependently-typed languages.
• [Scherer et al., 2018] Unrestricted and linear languages.

MULTI-LANGUAGE SEMANTICS 2 / 11

INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

We have two languages:

λ→ Programs s ::= x | c | λx:S.s | s1 s2 | SDS
Tt λ

∼= Programs t ::= v | c | λv:T.t | t1 t2 | DST
Ss

| () | ⟨s1, s2⟩ | π1s | π2s | () | ⟨t1, t2⟩ | π1t | π1t
λ→ Types S ::= a | Unit | S1 → S2 | S1 × S2 λ

∼= Types T ::= a | Unit | Πv:T1.T2 | Σv:T1.T2
λ→ Kinds L ::= type λ

∼= Kinds K ::= type | Πx:T.K

Simply-typed λ→ Dependently-typed λ
∼=

▶ Boundary crossing terms
• SDS

Tt allows using a dependent program t : T as a simple program of type S.
• DST

Ss allows using a simple program s : S as a dependent program of type T.
▶ Variables x and v are different from each others, and share a context.
▶ Constants c, a are shared inductive definitions.

• Each type a has a simple and a dependent kind.
• Each constructor c has a simple and a dependent type.
• WLOG, every constant takes exactly one argument.

MULTI-LANGUAGE SEMANTICS 3 / 11

INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

We have two languages:

λ→ Programs s ::= x | c | λx:S.s | s1 s2 | SDS
Tt λ

∼= Programs t ::= v | c | λv:T.t | t1 t2 | DST
Ss

| () | ⟨s1, s2⟩ | π1s | π2s | () | ⟨t1, t2⟩ | π1t | π1t
λ→ Types S ::= a | Unit | S1 → S2 | S1 × S2 λ

∼= Types T ::= a | Unit | Πv:T1.T2 | Σv:T1.T2
λ→ Kinds L ::= type λ

∼= Kinds K ::= type | Πx:T.K

Simply-typed λ→ Dependently-typed λ
∼=

▶ Boundary crossing terms
• SDS

Tt allows using a dependent program t : T as a simple program of type S.
• DST

Ss allows using a simple program s : S as a dependent program of type T.

▶ Variables x and v are different from each others, and share a context.
▶ Constants c, a are shared inductive definitions.

• Each type a has a simple and a dependent kind.
• Each constructor c has a simple and a dependent type.
• WLOG, every constant takes exactly one argument.

MULTI-LANGUAGE SEMANTICS 3 / 11

INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

We have two languages:

λ→ Programs s ::= x | c | λx:S.s | s1 s2 | SDS
Tt λ

∼= Programs t ::= v | c | λv:T.t | t1 t2 | DST
Ss

| () | ⟨s1, s2⟩ | π1s | π2s | () | ⟨t1, t2⟩ | π1t | π1t
λ→ Types S ::= a | Unit | S1 → S2 | S1 × S2 λ

∼= Types T ::= a | Unit | Πv:T1.T2 | Σv:T1.T2
λ→ Kinds L ::= type λ

∼= Kinds K ::= type | Πx:T.K

Simply-typed λ→ Dependently-typed λ
∼=

▶ Boundary crossing terms
• SDS

Tt allows using a dependent program t : T as a simple program of type S.
• DST

Ss allows using a simple program s : S as a dependent program of type T.
▶ Variables x and v are different from each others, and share a context.

▶ Constants c, a are shared inductive definitions.
• Each type a has a simple and a dependent kind.
• Each constructor c has a simple and a dependent type.
• WLOG, every constant takes exactly one argument.

MULTI-LANGUAGE SEMANTICS 3 / 11

INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

We have two languages:

λ→ Programs s ::= x | c | λx:S.s | s1 s2 | SDS
Tt λ

∼= Programs t ::= v | c | λv:T.t | t1 t2 | DST
Ss

| () | ⟨s1, s2⟩ | π1s | π2s | () | ⟨t1, t2⟩ | π1t | π1t
λ→ Types S ::= a | Unit | S1 → S2 | S1 × S2 λ

∼= Types T ::= a | Unit | Πv:T1.T2 | Σv:T1.T2
λ→ Kinds L ::= type λ

∼= Kinds K ::= type | Πx:T.K

Simply-typed λ→ Dependently-typed λ
∼=

▶ Boundary crossing terms
• SDS

Tt allows using a dependent program t : T as a simple program of type S.
• DST

Ss allows using a simple program s : S as a dependent program of type T.
▶ Variables x and v are different from each others, and share a context.
▶ Constants c, a are shared inductive definitions.

• Each type a has a simple and a dependent kind.
• Each constructor c has a simple and a dependent type.
• WLOG, every constant takes exactly one argument.

MULTI-LANGUAGE SEMANTICS 3 / 11

INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

For boundary-crossing terms to work, we need to translate types.

Unit ⇔ Unit
(a : K) ∈ Sig

a ⇔ a t
S1 ⇔ T1 S2 ⇔ T2
S1 → S2 ⇔ Πv:T1.T2

Typing just check that the two types are related:

Γ ⊢⊢ t : T S ⇔ T
Γ ⊢⊢ SDS

Tt : S
Γ ⊢⊢ s : S Γ ⊢⊢ T : type S ⇔ T

Γ ⊢⊢ DST
Ss : T

MULTI-LANGUAGE SEMANTICS 4 / 11

INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

For boundary-crossing terms to work, we need to translate types.

Unit ⇔ Unit
(a : K) ∈ Sig

a ⇔ a t
S1 ⇔ T1 S2 ⇔ T2
S1 → S2 ⇔ Πv:T1.T2

Typing just check that the two types are related:

Γ ⊢⊢ t : T S ⇔ T
Γ ⊢⊢ SDS

Tt : S
Γ ⊢⊢ s : S Γ ⊢⊢ T : type S ⇔ T

Γ ⊢⊢ DST
Ss : T

MULTI-LANGUAGE SEMANTICS 4 / 11

INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

To evaluate boundary-crossing, we need to somehow translate arguments to constructors.

▶ Osera et al. [2012] assumes the user will provide translation functions for all constructors.
Given c : S → S′ and c : Πv:T.T′, define:

argToSc : T → S argToDc : S → T

Note these functions do not exist in either λ→ or λ∼=.
▶ These translation can be expressed as ornaments [Dagand and McBride, 2014].

inductive list : type =
| Empty : list
| Cons : nat → list → list

inductive list : nat → type =
| Empty : list zero
| Cons : Πn:nat.nat → list n → list (succ n)

type ornament list-length (n : nat) : list ⇒ list n
list-length zero Empty ⇒ Empty
list-length (succ n) (Cons m l) ⇒ Cons n (translate-nat m) (list-length n l)

MULTI-LANGUAGE SEMANTICS 5 / 11

INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

To evaluate boundary-crossing, we need to somehow translate arguments to constructors.
▶ Osera et al. [2012] assumes the user will provide translation functions for all constructors.

Given c : S → S′ and c : Πv:T.T′, define:

argToSc : T → S argToDc : S → T

Note these functions do not exist in either λ→ or λ∼=.

▶ These translation can be expressed as ornaments [Dagand and McBride, 2014].

inductive list : type =
| Empty : list
| Cons : nat → list → list

inductive list : nat → type =
| Empty : list zero
| Cons : Πn:nat.nat → list n → list (succ n)

type ornament list-length (n : nat) : list ⇒ list n
list-length zero Empty ⇒ Empty
list-length (succ n) (Cons m l) ⇒ Cons n (translate-nat m) (list-length n l)

MULTI-LANGUAGE SEMANTICS 5 / 11

INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

To evaluate boundary-crossing, we need to somehow translate arguments to constructors.
▶ Osera et al. [2012] assumes the user will provide translation functions for all constructors.

Given c : S → S′ and c : Πv:T.T′, define:

argToSc : T → S argToDc : S → T

Note these functions do not exist in either λ→ or λ∼=.
▶ These translation can be expressed as ornaments [Dagand and McBride, 2014].

inductive list : type =
| Empty : list
| Cons : nat → list → list

inductive list : nat → type =
| Empty : list zero
| Cons : Πn:nat.nat → list n → list (succ n)

type ornament list-length (n : nat) : list ⇒ list n
list-length zero Empty ⇒ Empty
list-length (succ n) (Cons m l) ⇒ Cons n (translate-nat m) (list-length n l)

MULTI-LANGUAGE SEMANTICS 5 / 11

INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

To evaluate boundary-crossing, we need to somehow translate arguments to constructors.
▶ Osera et al. [2012] assumes the user will provide translation functions for all constructors.

Given c : S → S′ and c : Πv:T.T′, define:

argToSc : T → S argToDc : S → T

Note these functions do not exist in either λ→ or λ∼=.
▶ These translation can be expressed as ornaments [Dagand and McBride, 2014].

inductive list : type =
| Empty : list
| Cons : nat → list → list

inductive list : nat → type =
| Empty : list zero
| Cons : Πn:nat.nat → list n → list (succ n)

type ornament list-length (n : nat) : list ⇒ list n
list-length zero Empty ⇒ Empty
list-length (succ n) (Cons m l) ⇒ Cons n (translate-nat m) (list-length n l)

MULTI-LANGUAGE SEMANTICS 5 / 11

INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

Now, let us look at the evaluation rule for boundary crossing on the simple side:

argToSc t = s

SDS′

T′(c t) −→ c s

SDS→S′

Πv:T.T′(λv:T.t) −→ λx:S.SDS′

[DST
S x/v]T′((λv:T.t) (DST

Sx))

For crossing on the dependent side, rules are more or less symmetric:

argToDc s = t (c : Πv:T.T′′) ∈ Sig [t/v]T′′ ∼= T′

DST′

S′ (c s) −→ c t

DSΠv:T.T′

S→S′ λx:S.s −→ λv:T.DST′

S′ ((λx:S.s) (SDS
Tv))

MULTI-LANGUAGE SEMANTICS 6 / 11

INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

Now, let us look at the evaluation rule for boundary crossing on the simple side:

argToSc t = s

SDS′

T′(c t) −→ c s

SDS→S′

Πv:T.T′(λv:T.t) −→ λx:S.SDS′

[DST
S x/v]T′((λv:T.t) (DST

Sx))

For crossing on the dependent side, rules are more or less symmetric:

argToDc s = t (c : Πv:T.T′′) ∈ Sig [t/v]T′′ ∼= T′

DST′

S′ (c s) −→ c t

DSΠv:T.T′

S→S′ λx:S.s −→ λv:T.DST′

S′ ((λx:S.s) (SDS
Tv))

MULTI-LANGUAGE SEMANTICS 6 / 11

INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

Now, let us look at the evaluation rule for boundary crossing on the simple side:

argToSc t = s

SDS′

T′(c t) −→ c s

SDS→S′

Πv:T.T′(λv:T.t) −→ λx:S.SDS′

[DST
S x/v]T′((λv:T.t) (DST

Sx))

For crossing on the dependent side, rules are more or less symmetric:

argToDc s = t (c : Πv:T.T′′) ∈ Sig [t/v]T′′ ∼= T′

DST′

S′ (c s) −→ c t

DSΠv:T.T′

S→S′ λx:S.s −→ λv:T.DST′

S′ ((λx:S.s) (SDS
Tv))

MULTI-LANGUAGE SEMANTICS 6 / 11

INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

Now, let us look at the evaluation rule for boundary crossing on the simple side:

argToSc t = s

SDS′

T′(c t) −→ c s

SDS→S′

Πv:T.T′(λv:T.t) −→ λx:S.SDS′

[DST
S x/v]T′((λv:T.t) (DST

Sx))

For crossing on the dependent side, rules are more or less symmetric:

argToDc s = t (c : Πv:T.T′′) ∈ Sig [t/v]T′′ ∼= T′

DST′

S′ (c s) −→ c t

DSΠv:T.T′

S→S′ λx:S.s −→ λv:T.DST′

S′ ((λx:S.s) (SDS
Tv))

MULTI-LANGUAGE SEMANTICS 6 / 11

INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

In this setting, we can prove the usual properties in the usual way:
▶ Substitution lemmas
▶ Type preservation
▶ Progress
▶ Canonical forms

...

But we need some properties of argToS and argToD :
▶ Respect substitutions: argToDc [s/x]s′ = [s/x]argToDc s′

▶ Respect evaluation: If s −→ s′, then argToDc s −→ argToDc s′
...

MULTI-LANGUAGE SEMANTICS 7 / 11

INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

In this setting, we can prove the usual properties in the usual way:
▶ Substitution lemmas
▶ Type preservation
▶ Progress
▶ Canonical forms

...
But we need some properties of argToS and argToD :
▶ Respect substitutions: argToDc [s/x]s′ = [s/x]argToDc s′

▶ Respect evaluation: If s −→ s′, then argToDc s −→ argToDc s′
...

MULTI-LANGUAGE SEMANTICS 7 / 11

COMPILER VERIFICATION

Another application of multi-language semantics is for compiler verification.

Overview

1. Define source language S and target language T .
2. Add boundary-crossing terms.
3. Use boundary-crossing to prove equivalence between source programs and target programs.

▶ Perconti and Ahmed [2014] applies this principle to a two-pass compiler.
• Source language is SYSTEM F (F).
• First pass does closure conversion (C).
• Second pass adds memory allocation (A).

Boundary crossing allowed between F and C, and between C and A.
Crossing between F and A can be done by combining the other crossings.

▶ Patterson et al. [2017] compiles a SYSTEM F-style language to typed assembly.

How do we know that compilation preserves semantics?

MULTI-LANGUAGE SEMANTICS 8 / 11

COMPILER VERIFICATION

Another application of multi-language semantics is for compiler verification.

Overview

1. Define source language S and target language T .
2. Add boundary-crossing terms.
3. Use boundary-crossing to prove equivalence between source programs and target programs.

▶ Perconti and Ahmed [2014] applies this principle to a two-pass compiler.
• Source language is SYSTEM F (F).
• First pass does closure conversion (C).
• Second pass adds memory allocation (A).

Boundary crossing allowed between F and C, and between C and A.
Crossing between F and A can be done by combining the other crossings.

▶ Patterson et al. [2017] compiles a SYSTEM F-style language to typed assembly.

How do we know that compilation preserves semantics?

MULTI-LANGUAGE SEMANTICS 8 / 11

COMPILER VERIFICATION

Another application of multi-language semantics is for compiler verification.

Overview

1. Define source language S and target language T .
2. Add boundary-crossing terms.
3. Use boundary-crossing to prove equivalence between source programs and target programs.

▶ Perconti and Ahmed [2014] applies this principle to a two-pass compiler.
• Source language is SYSTEM F (F).
• First pass does closure conversion (C).
• Second pass adds memory allocation (A).

Boundary crossing allowed between F and C, and between C and A.
Crossing between F and A can be done by combining the other crossings.

▶ Patterson et al. [2017] compiles a SYSTEM F-style language to typed assembly.

How do we know that compilation preserves semantics?

MULTI-LANGUAGE SEMANTICS 8 / 11

COMPILER VERIFICATION

Another application of multi-language semantics is for compiler verification.

Overview

1. Define source language S and target language T .
2. Add boundary-crossing terms.
3. Use boundary-crossing to prove equivalence between source programs and target programs.

▶ Perconti and Ahmed [2014] applies this principle to a two-pass compiler.
• Source language is SYSTEM F (F).
• First pass does closure conversion (C).
• Second pass adds memory allocation (A).

Boundary crossing allowed between F and C, and between C and A.
Crossing between F and A can be done by combining the other crossings.

▶ Patterson et al. [2017] compiles a SYSTEM F-style language to typed assembly.

How do we know that compilation preserves semantics?

MULTI-LANGUAGE SEMANTICS 8 / 11

COMPILER VERIFICATION

Another application of multi-language semantics is for compiler verification.

Overview

1. Define source language S and target language T .
2. Add boundary-crossing terms.
3. Use boundary-crossing to prove equivalence between source programs and target programs.

▶ Perconti and Ahmed [2014] applies this principle to a two-pass compiler.
• Source language is SYSTEM F (F).
• First pass does closure conversion (C).
• Second pass adds memory allocation (A).

Boundary crossing allowed between F and C, and between C and A.
Crossing between F and A can be done by combining the other crossings.

▶ Patterson et al. [2017] compiles a SYSTEM F-style language to typed assembly.

How do we know that compilation preserves semantics?

MULTI-LANGUAGE SEMANTICS 8 / 11

COMPILER VERIFICATION
CONTEXTUAL EQUIVALENCE

How do we know that compilation (of open programs) preserves semantics?
▶ For pure programs, it is straightforward since we can look at programs in isolation.
▶ If there are effects, especially memory allocations, we need to consider the surroundings of

programs. Evaluation contexts capture this idea.

Evaluation contexts

▶ An evaluation context is a program with a single hole in it.

Evaluation context C ::= ⋄ | λx:A.C | C M | M C | ...

Applying an evaluation context, C[M], to a term fills the hole with that term.
▶ In the multi-language setting, we need mutually-defined evaluation contexts for every

language.
S Evaluation context C ::= ... | CrossToSC
T Evaluation context C ::= ... | CrossToT C

⇒ Programs from every language can be passed to evaluation context from every language.

MULTI-LANGUAGE SEMANTICS 9 / 11

COMPILER VERIFICATION
CONTEXTUAL EQUIVALENCE

How do we know that compilation (of open programs) preserves semantics?
▶ For pure programs, it is straightforward since we can look at programs in isolation.
▶ If there are effects, especially memory allocations, we need to consider the surroundings of

programs. Evaluation contexts capture this idea.

Evaluation contexts

▶ An evaluation context is a program with a single hole in it.

Evaluation context C ::= ⋄ | λx:A.C | C M | M C | ...

Applying an evaluation context, C[M], to a term fills the hole with that term.

▶ In the multi-language setting, we need mutually-defined evaluation contexts for every
language.

S Evaluation context C ::= ... | CrossToSC
T Evaluation context C ::= ... | CrossToT C

⇒ Programs from every language can be passed to evaluation context from every language.

MULTI-LANGUAGE SEMANTICS 9 / 11

COMPILER VERIFICATION
CONTEXTUAL EQUIVALENCE

How do we know that compilation (of open programs) preserves semantics?
▶ For pure programs, it is straightforward since we can look at programs in isolation.
▶ If there are effects, especially memory allocations, we need to consider the surroundings of

programs. Evaluation contexts capture this idea.

Evaluation contexts

▶ An evaluation context is a program with a single hole in it.

Evaluation context C ::= ⋄ | λx:A.C | C M | M C | ...

Applying an evaluation context, C[M], to a term fills the hole with that term.
▶ In the multi-language setting, we need mutually-defined evaluation contexts for every

language.
S Evaluation context C ::= ... | CrossToSC
T Evaluation context C ::= ... | CrossToT C

⇒ Programs from every language can be passed to evaluation context from every language.

MULTI-LANGUAGE SEMANTICS 9 / 11

COMPILER VERIFICATION
CONTEXTUAL EQUIVALENCE

Now, to prove correctness of compiler, we need two new judgments:

1. Γ ⊢⊢ (s:S)⇝ (t:T) – S term s compiles to t.
• Intuitively, t is the fully evaluated CrossToT s.

2. Γ ⊢⊢ (s:S) ≈ (t:T) – S term s and T term t are contextually equivalent.
• For all S evaluation context C, Γ ⊢⊢ C[s] ≡ C[CrossToSt] : S, and
• For all T evaluation context C, Γ ⊢⊢ C[CrossToT s] ≡ C[t] : T.

Theorem (Correctness of compilation)

If Γ ⊢⊢ (s:S)⇝ (t:T), then Γ ⊢⊢ (s:S) ≈ (t:T).

MULTI-LANGUAGE SEMANTICS 10 / 11

COMPILER VERIFICATION
CONTEXTUAL EQUIVALENCE

Now, to prove correctness of compiler, we need two new judgments:

1. Γ ⊢⊢ (s:S)⇝ (t:T) – S term s compiles to t.
• Intuitively, t is the fully evaluated CrossToT s.

2. Γ ⊢⊢ (s:S) ≈ (t:T) – S term s and T term t are contextually equivalent.
• For all S evaluation context C, Γ ⊢⊢ C[s] ≡ C[CrossToSt] : S, and
• For all T evaluation context C, Γ ⊢⊢ C[CrossToT s] ≡ C[t] : T.

Theorem (Correctness of compilation)

If Γ ⊢⊢ (s:S)⇝ (t:T), then Γ ⊢⊢ (s:S) ≈ (t:T).

MULTI-LANGUAGE SEMANTICS 10 / 11

COMPILER VERIFICATION
CONTEXTUAL EQUIVALENCE

Now, to prove correctness of compiler, we need two new judgments:

1. Γ ⊢⊢ (s:S)⇝ (t:T) – S term s compiles to t.
• Intuitively, t is the fully evaluated CrossToT s.

2. Γ ⊢⊢ (s:S) ≈ (t:T) – S term s and T term t are contextually equivalent.
• For all S evaluation context C, Γ ⊢⊢ C[s] ≡ C[CrossToSt] : S, and
• For all T evaluation context C, Γ ⊢⊢ C[CrossToT s] ≡ C[t] : T.

Theorem (Correctness of compilation)

If Γ ⊢⊢ (s:S)⇝ (t:T), then Γ ⊢⊢ (s:S) ≈ (t:T).

MULTI-LANGUAGE SEMANTICS 10 / 11

CONCLUSION

Recap

▶ There are three approaches to language interoperability.
• The unsafe approach ignores all typing (bad).
• The monolithic approach merges all language into one (impractical).
• The multi-language approach extends each language with boundary-crossing terms.

▶ We looked into the inner workings of multi-languages with dependent interoperability.
▶ We discussed an application of multi-languages for compiler verification.

Limitations of multi-language approach

▶ Unclear if it scales to more than two languages.
▶ Not general; depends heavily on language-specific features.
▶ Not grounded on logic.

MULTI-LANGUAGE SEMANTICS 11 / 11

CONCLUSION

Recap

▶ There are three approaches to language interoperability.
• The unsafe approach ignores all typing (bad).
• The monolithic approach merges all language into one (impractical).
• The multi-language approach extends each language with boundary-crossing terms.

▶ We looked into the inner workings of multi-languages with dependent interoperability.
▶ We discussed an application of multi-languages for compiler verification.

Limitations of multi-language approach

▶ Unclear if it scales to more than two languages.
▶ Not general; depends heavily on language-specific features.
▶ Not grounded on logic.

MULTI-LANGUAGE SEMANTICS 11 / 11

Pierre-Évariste Dagand and Conor McBride. Transporting functions across ornaments. J. Funct.
Program., 24(2-3):316–383, 2014. doi: 10.1017/S0956796814000069. URL
https://doi.org/10.1017/S0956796814000069.

Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-language programs.
ACM Trans. Program. Lang. Syst., 31(3):12:1–12:44, 2009. doi: 10.1145/1498926.1498930. URL
https://doi.org/10.1145/1498926.1498930.

Peter-Michael Osera, Vilhelm Sjöberg, and Steve Zdancewic. Dependent interoperability. In Koen
Claessen and Nikhil Swamy, editors, Proceedings of the sixth workshop on Programming Languages
meets Program Verification, PLPV 2012, Philadelphia, PA, USA, January 24, 2012, pages 3–14. ACM,
2012. doi: 10.1145/2103776.2103779. URL https://doi.org/10.1145/2103776.2103779.

Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic typing with dependent
types. In Jean-Jacques Lévy, Ernst W. Mayr, and John C. Mitchell, editors, Exploring New Frontiers
of Theoretical Informatics, IFIP 18th World Computer Congress, TC1 3rd International Conference on
Theoretical Computer Science (TCS2004), 22-27 August 2004, Toulouse, France, volume 155 of IFIP,
pages 437–450. Kluwer/Springer, 2004. doi: 10.1007/1-4020-8141-3_34. URL
https://doi.org/10.1007/1-4020-8141-3_34.

Daniel Patterson, Jamie Perconti, Christos Dimoulas, and Amal Ahmed. Funtal: reasonably mixing
a functional language with assembly. In Albert Cohen and Martin T. Vechev, editors, Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,
Barcelona, Spain, June 18-23, 2017, pages 495–509. ACM, 2017. doi: 10.1145/3062341.3062347. URL
https://doi.org/10.1145/3062341.3062347.

James T. Perconti and Amal Ahmed. Verifying an open compiler using multi-language semantics.
In Zhong Shao, editor, Programming Languages and Systems - 23rd European Symposium on
Programming, ESOP 2014, Held as Part of the European Joint Conferences on Theory and Practice of

MULTI-LANGUAGE SEMANTICS 11 / 11

https://doi.org/10.1017/S0956796814000069
https://doi.org/10.1145/1498926.1498930
https://doi.org/10.1145/2103776.2103779
https://doi.org/10.1007/1-4020-8141-3_34
https://doi.org/10.1145/3062341.3062347

Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes
in Computer Science, pages 128–148. Springer, 2014. doi: 10.1007/978-3-642-54833-8_8. URL
https://doi.org/10.1007/978-3-642-54833-8_8.

Gabriel Scherer, Max S. New, Nick Rioux, and Amal Ahmed. FabULous interoperability for ML and
a linear language. In Christel Baier and Ugo Dal Lago, editors, Foundations of Software Science and
Computation Structures - 21st International Conference, FOSSACS 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20,
2018, Proceedings, volume 10803 of Lecture Notes in Computer Science, pages 146–162. Springer,
2018. doi: 10.1007/978-3-319-89366-2_8. URL
https://doi.org/10.1007/978-3-319-89366-2_8.

Valery Trifonov and Zhong Shao. Safe and principled language interoperation. In S. Doaitse
Swierstra, editor, Programming Languages and Systems, 8th European Symposium on Programming,
ESOP’99, Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’99, Amsterdam, The Netherlands, 22-28 March, 1999, Proceedings, volume 1576 of Lecture
Notes in Computer Science, pages 128–146. Springer, 1999. doi: 10.1007/3-540-49099-X_9. URL
https://doi.org/10.1007/3-540-49099-X_9.

MULTI-LANGUAGE SEMANTICS 11 / 11

https://doi.org/10.1007/978-3-642-54833-8_8
https://doi.org/10.1007/978-3-319-89366-2_8
https://doi.org/10.1007/3-540-49099-X_9

	Introduction
	Interoperability
	Main approaches
	Dependent interoperability OSZ12

	Compiler verification
	Contextual equivalence

	Conclusion
	References

