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INTRODUCTION

We want to assign meaning to programs from multiple languages simultaneously.

Applications

▶ Interoperability
Modern software are written in multiple languages that are allowed to interact.

▶ Compiler verification
Compilers transform programs in a sequence of intermediate language.

Challenges

▶ Different languages have different features, providing different safety guarantees.
• Type hierarchy (simple, dependent, polymorphic).
• Substructural rules.
• Effects.

How to ensure each language’s safety remains in the presence of interoperability?
▶ How to ensure the semantics of input and output programs match?
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INTEROPERABILITY
MAIN APPROACHES

1. Unsafe
• Trust the programmer; don’t type-check.
• Run each program according to its own language’s semantics.

2. Monolithic
• Merge all the languages into a big language.
• Use complicated annotations to control what program can use what features.
• [Trifonov and Shao, 1999] Three languages with different effects.
• [Ou et al., 2004] Simply-typed and a dependently-typed language.

3. Multi-language
• Keep all languages separated.
• Interactions restricted to special boundary-crossing terms.
• [Matthews and Findler, 2009] Untyped and simply-typed languages.
• [Osera et al., 2012] Simply-types and (first-order) dependently-typed languages.
• [Scherer et al., 2018] Unrestricted and linear languages.

MULTI-LANGUAGE SEMANTICS 2 / 11



INTEROPERABILITY
MAIN APPROACHES

1. Unsafe
• Trust the programmer; don’t type-check.
• Run each program according to its own language’s semantics.

2. Monolithic
• Merge all the languages into a big language.
• Use complicated annotations to control what program can use what features.
• [Trifonov and Shao, 1999] Three languages with different effects.
• [Ou et al., 2004] Simply-typed and a dependently-typed language.

3. Multi-language
• Keep all languages separated.
• Interactions restricted to special boundary-crossing terms.
• [Matthews and Findler, 2009] Untyped and simply-typed languages.
• [Osera et al., 2012] Simply-types and (first-order) dependently-typed languages.
• [Scherer et al., 2018] Unrestricted and linear languages.

MULTI-LANGUAGE SEMANTICS 2 / 11



INTEROPERABILITY
MAIN APPROACHES

1. Unsafe
• Trust the programmer; don’t type-check.
• Run each program according to its own language’s semantics.

2. Monolithic
• Merge all the languages into a big language.
• Use complicated annotations to control what program can use what features.
• [Trifonov and Shao, 1999] Three languages with different effects.
• [Ou et al., 2004] Simply-typed and a dependently-typed language.

3. Multi-language
• Keep all languages separated.
• Interactions restricted to special boundary-crossing terms.
• [Matthews and Findler, 2009] Untyped and simply-typed languages.
• [Osera et al., 2012] Simply-types and (first-order) dependently-typed languages.
• [Scherer et al., 2018] Unrestricted and linear languages.

MULTI-LANGUAGE SEMANTICS 2 / 11



INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

We have two languages:

λ→ Programs s ::= x | c | λx:S.s | s1 s2 | SDS
Tt λ

∼= Programs t ::= v | c | λv:T.t | t1 t2 | DST
Ss

| () | ⟨s1, s2⟩ | π1s | π2s | () | ⟨t1, t2⟩ | π1t | π1t
λ→ Types S ::= a | Unit | S1 → S2 | S1 × S2 λ

∼= Types T ::= a | Unit | Πv:T1.T2 | Σv:T1.T2
λ→ Kinds L ::= type λ

∼= Kinds K ::= type | Πx:T.K

Simply-typed λ→ Dependently-typed λ
∼=

▶ Boundary crossing terms
• SDS

Tt allows using a dependent program t : T as a simple program of type S.
• DST

Ss allows using a simple program s : S as a dependent program of type T.
▶ Variables x and v are different from each others, and share a context.
▶ Constants c, a are shared inductive definitions.

• Each type a has a simple and a dependent kind.
• Each constructor c has a simple and a dependent type.
• WLOG, every constant takes exactly one argument.
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INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

For boundary-crossing terms to work, we need to translate types.

Unit ⇔ Unit
(a : K) ∈ Sig

a ⇔ a t
S1 ⇔ T1 S2 ⇔ T2
S1 → S2 ⇔ Πv:T1.T2

Typing just check that the two types are related:

Γ ⊢⊢ t : T S ⇔ T
Γ ⊢⊢ SDS

Tt : S
Γ ⊢⊢ s : S Γ ⊢⊢ T : type S ⇔ T

Γ ⊢⊢ DST
Ss : T
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INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

To evaluate boundary-crossing, we need to somehow translate arguments to constructors.

▶ Osera et al. [2012] assumes the user will provide translation functions for all constructors.
Given c : S → S′ and c : Πv:T.T′, define:

argToSc : T → S argToDc : S → T

Note these functions do not exist in either λ→ or λ∼=.
▶ These translation can be expressed as ornaments [Dagand and McBride, 2014].

inductive list : type =
| Empty : list
| Cons : nat → list → list

inductive list : nat → type =
| Empty : list zero
| Cons : Πn:nat.nat → list n → list (succ n)

type ornament list-length (n : nat) : list ⇒ list n
list-length zero Empty ⇒ Empty
list-length (succ n) (Cons m l) ⇒ Cons n (translate-nat m) (list-length n l)
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INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

Now, let us look at the evaluation rule for boundary crossing on the simple side:

argToSc t = s

SDS′

T′(c t) −→ c s

SDS→S′

Πv:T.T′(λv:T.t) −→ λx:S.SDS′

[DST
S x/v]T′((λv:T.t) (DST

Sx))

For crossing on the dependent side, rules are more or less symmetric:

argToDc s = t (c : Πv:T.T′′) ∈ Sig [t/v]T′′ ∼= T′

DST′

S′ (c s) −→ c t

DSΠv:T.T′

S→S′ λx:S.s −→ λv:T.DST′

S′ ((λx:S.s) (SDS
Tv))

MULTI-LANGUAGE SEMANTICS 6 / 11



INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

Now, let us look at the evaluation rule for boundary crossing on the simple side:

argToSc t = s

SDS′

T′(c t) −→ c s

SDS→S′

Πv:T.T′(λv:T.t) −→ λx:S.SDS′

[DST
S x/v]T′((λv:T.t) (DST

Sx))

For crossing on the dependent side, rules are more or less symmetric:

argToDc s = t (c : Πv:T.T′′) ∈ Sig [t/v]T′′ ∼= T′

DST′

S′ (c s) −→ c t

DSΠv:T.T′

S→S′ λx:S.s −→ λv:T.DST′

S′ ((λx:S.s) (SDS
Tv))

MULTI-LANGUAGE SEMANTICS 6 / 11



INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

Now, let us look at the evaluation rule for boundary crossing on the simple side:

argToSc t = s

SDS′

T′(c t) −→ c s

SDS→S′

Πv:T.T′(λv:T.t) −→ λx:S.SDS′

[DST
S x/v]T′((λv:T.t) (DST

Sx))

For crossing on the dependent side, rules are more or less symmetric:

argToDc s = t (c : Πv:T.T′′) ∈ Sig [t/v]T′′ ∼= T′

DST′

S′ (c s) −→ c t

DSΠv:T.T′

S→S′ λx:S.s −→ λv:T.DST′

S′ ((λx:S.s) (SDS
Tv))

MULTI-LANGUAGE SEMANTICS 6 / 11



INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

Now, let us look at the evaluation rule for boundary crossing on the simple side:

argToSc t = s

SDS′

T′(c t) −→ c s

SDS→S′

Πv:T.T′(λv:T.t) −→ λx:S.SDS′

[DST
S x/v]T′((λv:T.t) (DST

Sx))

For crossing on the dependent side, rules are more or less symmetric:

argToDc s = t (c : Πv:T.T′′) ∈ Sig [t/v]T′′ ∼= T′

DST′

S′ (c s) −→ c t

DSΠv:T.T′

S→S′ λx:S.s −→ λv:T.DST′

S′ ((λx:S.s) (SDS
Tv))

MULTI-LANGUAGE SEMANTICS 6 / 11



INTEROPERABILITY
DEPENDENT INTEROPERABILITY [OSERA ET AL., 2012]

In this setting, we can prove the usual properties in the usual way:
▶ Substitution lemmas
▶ Type preservation
▶ Progress
▶ Canonical forms

...

But we need some properties of argToS and argToD :
▶ Respect substitutions: argToDc [s/x]s′ = [s/x]argToDc s′

▶ Respect evaluation: If s −→ s′, then argToDc s −→ argToDc s′
...
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COMPILER VERIFICATION

Another application of multi-language semantics is for compiler verification.

Overview

1. Define source language S and target language T .
2. Add boundary-crossing terms.
3. Use boundary-crossing to prove equivalence between source programs and target programs.

▶ Perconti and Ahmed [2014] applies this principle to a two-pass compiler.
• Source language is SYSTEM F (F).
• First pass does closure conversion (C).
• Second pass adds memory allocation (A).

Boundary crossing allowed between F and C, and between C and A.
Crossing between F and A can be done by combining the other crossings.

▶ Patterson et al. [2017] compiles a SYSTEM F-style language to typed assembly.

How do we know that compilation preserves semantics?
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COMPILER VERIFICATION
CONTEXTUAL EQUIVALENCE

How do we know that compilation (of open programs) preserves semantics?
▶ For pure programs, it is straightforward since we can look at programs in isolation.
▶ If there are effects, especially memory allocations, we need to consider the surroundings of

programs. Evaluation contexts capture this idea.

Evaluation contexts

▶ An evaluation context is a program with a single hole in it.

Evaluation context C ::= ⋄ | λx:A.C | C M | M C | ...

Applying an evaluation context, C[M], to a term fills the hole with that term.
▶ In the multi-language setting, we need mutually-defined evaluation contexts for every

language.
S Evaluation context C ::= ... | CrossToSC
T Evaluation context C ::= ... | CrossToT C

⇒ Programs from every language can be passed to evaluation context from every language.
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COMPILER VERIFICATION
CONTEXTUAL EQUIVALENCE

Now, to prove correctness of compiler, we need two new judgments:

1. Γ ⊢⊢ (s:S)⇝ (t:T) – S term s compiles to t.
• Intuitively, t is the fully evaluated CrossToT s.

2. Γ ⊢⊢ (s:S) ≈ (t:T) – S term s and T term t are contextually equivalent.
• For all S evaluation context C, Γ ⊢⊢ C[s] ≡ C[CrossToSt] : S, and
• For all T evaluation context C, Γ ⊢⊢ C[CrossToT s] ≡ C[t] : T.

Theorem (Correctness of compilation)

If Γ ⊢⊢ (s:S)⇝ (t:T), then Γ ⊢⊢ (s:S) ≈ (t:T).
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CONCLUSION

Recap

▶ There are three approaches to language interoperability.
• The unsafe approach ignores all typing (bad).
• The monolithic approach merges all language into one (impractical).
• The multi-language approach extends each language with boundary-crossing terms.

▶ We looked into the inner workings of multi-languages with dependent interoperability.
▶ We discussed an application of multi-languages for compiler verification.

Limitations of multi-language approach

▶ Unclear if it scales to more than two languages.
▶ Not general; depends heavily on language-specific features.
▶ Not grounded on logic.
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