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Abstract. We consider the question: Does a set of patterns cover all
objects of a given type? This is straightforward in the simply-typed set-
ting, but undecidable in the presence of dependent types. We discuss
the question in the setting of Beluga, a dependently-typed programming
and reasoning environment which supports programming with contex-
tual objects and contexts. We describe the design and implementation of
a coverage algorithm for Beluga programs and provide an in-depth com-
parison to closely related systems such as Twelf and Delphin. Our expe-
rience with coverage checking Beluga programs shows that many prob-
lems and difficulties are avoided. Beluga’s coverage algorithm has been
used on a wide range of examples, from mechanizing the meta-theory of
programming languages from Pierce’s textbook Types and Programming
Languages to the examples from the Twelf repository.

1 Introduction

Beluga [12–14] is a programming and reasoning environment for formal systems
and proofs. Users specify formal systems within the logical framework LF [6] and
implement proofs about formal systems as dependently-typed recursive functions
that pattern match on LF objects.

Beluga’s strengths come from supporting encodings based on higher-order ab-
stract syntax (HOAS), in which binders in the object language are represented
as binders in LF’s meta-language. As a consequence, users can avoid implement-
ing common and tricky routines dealing with variables, such as capture-avoiding
substitution, renaming and fresh name generation. In addition, Beluga provides
intrinsic support for contexts and contextual objects—LF objects that depend
on assumptions. Consequently, users can avoid the bureaucracy of explicitly
managing and reasoning about contexts. Properties about contexts such as well-
formedness, uniqueness of each assumption, weakening, and strengthening are
directly supported. This allows a direct and elegant implementation of inductive
proofs as recursive functions over contextual objects.

In this paper, we present the design and implementation of coverage checking
for Beluga. Coverage checking of functional programs ensures that the user wrote
an exhaustive set of cases. It is typically an iterative process, splitting a pattern
of a given type into an equivalent set of more precise patterns. For example,
suppose we have a datatype tp with two constructors: nat : tp denoting a base



type and arr : tp → tp → tp denoting the type of object-level functions. To see
that the set of patterns Z = {nat, arr S1 S2} covers all objects of type tp, we split
T (the general pattern, which matches anything) into {nat, arr T1 T2} where nat

and arr T1 T2 are coverage goals. Each coverage goal must be an instance of the
specified set of patterns in Z. In this small example, Z immediately covers tp.
But suppose the program has the cases Z ′ = {nat, arr nat S1, arr (arr S1 S2) S3}.
Now the coverage goals nat and arr T1 T2 are not immediately covered. We
need to refine the coverage goals again by splitting T1. This results in the set
{nat, arr nat T2, arr (arr T3 T4) T2}. Each coverage goal in this set is indeed an
instance of the specified set of patterns Z ′, so Z ′ is exhaustive.

In summary, to check that all objects of type A are covered by a set of
user-defined patterns Z, we generate a set of coverage goals, called a covering
set, containing all constructors of the type A. If every coverage goal is matched
by one of the user’s patterns, coverage succeeds. If not, we iterate and refine
the covering set by splitting on a variable. There is a choice of where to split
(which variable), and how deeply to split. We could have chosen to refine T2

instead of T1. Coverage is a search problem: to exhaust the search space, we
need to split deeply enough so that, if no covering set is found, it is because
there is some object not covered; to avoid combinatorial explosion, we also want
to avoid splitting more deeply than needed.

Coverage checking in simply-typed functional programming languages is straight-
forward, and has rarely been described in detail. In particular, the choice of vari-
able to split is less important—it is merely a matter of efficiency. The maximum
splitting depth is bounded by the depth of the user’s patterns.

In languages like Beluga, coverage faces several challenges: dependent types,
HOAS encodings, contextual objects, and contexts. Dependent types make cov-
erage checking undecidable. The main problem is that knowing when a type
is empty is undecidable [7, p. 179]; in languages with dependent types, empty
types are an essential tool for representing impossibility (contradiction). More-
over, Beluga supports encodings using HOAS, so the splitting operation must
rely on higher-order unification, which is in general undecidable [5]. Finally, we
support not only patterns on closed objects as described above, but we allow
patterns such as [a:tp] arr a a describing a function type whose domain and
codomain are the type variable a:tp. More generally, given a context g contain-
ing type variables, we allow patterns that are well-typed within the context g; for
example, [g] arr (T1 ..) (T2 ..) stands for a pattern where the pattern variables
T1 and T2 can refer to the variables declared in the context g. This leads to new
considerations.

This paper describes two contributions:

1. Design and implementation of a coverage checker: We present a sound
theoretical foundation for coverage of contextual objects and contexts based on
our earlier work [4]. Building on these ideas, we have designed and implemented
a coverage algorithm in the Beluga system. Our coverage algorithm splits objects
up to a certain depth and also supports absurd patterns which allow the pro-
grammer to explicitly state that a given case is impossible. We have used it on a



wide range of examples, from mechanizing proofs about programming languages
from Pierce’s textbook [16] to examples we translated from the Twelf reposi-
tory. Our experience shows that the implementation of the coverage checker is
transparent and its performance is competitive.

2. In-depth comparison to other systems: Dependently-typed systems such
as Twelf [11], Delphin [17, 18], and Agda [1, 10] implement coverage, even though
the general question is undecidable. To highlight the similarities and differences,
we discuss the implementation of the proof that evaluation in a small language
with arithmetic expressions is deterministic (see Pierce [16, Ch. 3]). We deliber-
ately chose such a simple example to concentrate on the main ideas and bring
out the similarities and differences between these systems. Second, we give a
program that translates well-typed terms in HOAS to well-typed terms in de
Bruijn format. This example exploits context matching in Beluga and highlights
the additional issues in coverage.

Compared to Twelf and Delphin, our experience with coverage checking Bel-
uga programs shows that Beluga avoids many difficulties and requires the user to
prove fewer lemmas. Compared to Agda [10], our approach is similar but handles
a richer class of patterns. The electronic appendix [15] includes the examples in
Twelf, Delphin, Agda and Beluga.

2 Example: Determinism of Small-Step Semantics

2.1 Specifying Terms, Values and Small-Step Semantics in LF

We first specify this small language in the logical framework LF [6]. We begin by
defining a type tm of terms and the constructors z, succ, and pred that inhabit the
type tm. We also define when a term is a value using the type family value. The
constant v z states that z is a value and the constant v succ says that (succ V) is
a value if V is a value.

tm : type .
z : tm.
succ : tm → tm.
pred : tm → tm.

step : tm → tm → type .
s_succ: step M M’

→ step (succ M) (succ M’).
s_pred_zero: step (pred z) z.

value : tm → type .
v_z : value z.
v_succ : value V → value (succ V).

s_pred : step M M’
→ step (pred M) (pred M’).

s_pred_succ: value V
→ step (pred (succ V)) V.

Finally, we specify the small-step semantics in the logical framework LF using
the type family step. There are four rules specifying the evaluation of terms
which are not yet values: two congruence rules s succ and s pred for successor
and predecessor, and two rules s pred zero and s pred succ for stepping pred V

where V is a value.

2.2 Programming Proofs: Determinism of Small-Step Semantics

We discuss the implementation of the proof that the small-step semantics is
deterministic in different systems, starting with Beluga.



Beluga Beluga [12, 14] is a dependently-typed functional language that supports
pattern matching on LF objects. Its unique feature is its intrinsic support for
contexts and contextual objects which we will exploit in a later example of
translating terms from HOAS to de Bruijn form. A contextual object [Ψ] M has
the contextual type A[Ψ] where M has type A in the context Ψ . Since there are no
assumptions in the proofs about the small-step semantics, the context Ψ will be
empty: [ ] M has type A[ ]. This allows us to concentrate on the similarities and
differences with related systems. In a later section, we examine the challenges
presented by non-empty contexts.

First, we establish a lemma that values do not step, i.e. there is no step
rule that applies to a value. In other words, the conjunction of step M M’ and
value M leads to a contradiction. We introduce a type empty with no constructors.
The proof that values do not step is implemented as a recursive function by a
case-split on value M. If we have derived value z using the constant (axiom) v z,
then there is in fact no object of type step z z: we have a contradiction. This is
handled in Beluga by impossible s in [ ], which checks that the type of the object
s is empty and hence there is no further split possible. If we have derived value

(succ N) using the object v s V then V has type value N and we must have used
the rule s succ D where D is an object of type step N N’. But by the induction
hypothesis (recursive call) we know that that this is impossible. This proof is
realized by the function values dont step.

empty : type .
rec values_dont_step:(step M M’)[] → (value M )[] → empty [] =
fn s ⇒ fn v ⇒ case v of
| [ ] v_z ⇒ impossible s in [ ]
| [ ] v_s V ⇒ let [ ] s_succ D = s in values_dont_step ([ ] D) ([ ] V) ;

rec det : (step M N1)[] → (step M N2)[] → (equal N1 N2)[] =
fn s1 ⇒ fn s2 ⇒ case s1 of
| [] s_succ D ⇒ let [] s_succ F = s2 in

let [] ref = det ([] D) ([] F) in [] ref
| [] s_pred_zero ⇒ let [] s_pred_zero = s2 in [] ref
| [] s_pred_succ V ⇒ (case s2 of

| [] s_pred_succ _ ⇒ [] ref
| [] s_pred D ⇒ impossible values_dont_step ([] D) ([] v_s V) in [])

| [] s_pred D ⇒ (case s2 of
| [] s_pred F ⇒ let [] ref = det ([] D) ([] F) in [] ref
| [] s_pred_succ V ⇒ impossible values_dont_step ([] D) ([] v_s V) in []
| [] s_pred_zero ⇒ impossible values_dont_step ([] D) ([] v_z) in []) ;

The implementation of the determinacy proof of the small-step semantics
follows closely the on-paper proof. We case-analyze the first argument s1 which
derives (step M N1)[], and in each branch case-analyze the second argument.
The first case says that s1 is a proof s succ D that step (succ M’) (succ N1’),
where D is a derivation of step M’ N1’. Hence we know that s2 is a derivation of
step (succ M’) N2. It must have ended in the rule s succ and can be described by
s succ E where the subderivation E derives step M’ N2’ and N2 = succ N2’.

By the induction hypothesis we know that eq N1’ N2’. By inversion, we could
only have arrived at eq N1’ N2’ using the rule ref, and N1’ = N2’. Therefore, we
can establish eq (succ N1’) (succ N2’) by applying ref.



In the second case, the s pred zero rule concludes the derivation s1 and its
conclusion is step (pred z) z. Two rules, s pred zero and s pred, could have been
used to derive step (pred z) N2 in s2. For s_pred_zero, the two results are obvi-
ously equal. For s_pred, we have a subderivation D:step z N2’ and N2 = pred N2’.
However, there is no rule that can step z, so D cannot exist. Beluga automatically
proves that this case is impossible, so it suffices to write only one case.

The other cases, where s1 ends in either s_pred_succ V or s_pred D, follow a
similar idea. While it is obvious that there is no step rule for z, it is non-trivial
for a value succ V. Hence, we appeal to the lemma values_dont_step and show that
we have arrived at a contradiction (empty type).

Beluga’s coverage checker accepts the above program. We also note that we
did not write out some cases that the coverage checker automatically detects are
impossible. For example, if we used s_pred_zero for s1, we could not have used
s pred succ for s2. Finally, note that we could have obtained a more compact
proof by considering s1 and s2 simultaneously; the full development can be found
in the electronic appendix [15].

Agda Agda [10] is based on Martin-Löf’s type theory and is well-suited for pro-
gramming proofs. Unlike Beluga, where we strictly separate the LF language
from the recursive programs that analyze and manipulate LF objects, Agda
does not separate the language of types from the language of programs. Cover-
age checking is an important component in the Agda system, since establishing
equality between two types may involve executing recursive functions that are
used within a type. Agda supports simultaneous patterns, but one can end up
writing more cases than in Beluga; Agda splits on a variable only when there
is a user-given incentive, meaning a user-written pattern. Consequently, the be-
havior and the termination of the coverage checker is easy to control. In Beluga,
we try to discharge cases by automatically splitting a variable; this process of
splitting is guided by heuristics that control how deeply to split. This means that
there are some examples where Beluga automatically proves that some cases are
impossible while Agda requires one to be more explicit. For example, in Agda we
have to explicitly state the case where s1 uses s_pred_zero and s2 uses s_pred D.
Since there is no object for D:step z N2’, we write an absurd pattern for D forcing
Agda to check that indeed the type is empty. Beluga automatically discharges
this case. Similar to Agda’s absurd patterns, which explicitly state that a given
type is empty, we support empty patterns using the keyword impossible ; this is
useful when Beluga cannot automatically detect that a case is impossible, and
when explicitly including such a case makes the proof more readable.

Twelf In Twelf [11], this proof is implemented as a relation. Subsequently, we
establish that the relation represents a total function. This is accomplished by
first providing a mode declaration stating which arguments of the relation are
inputs and which are outputs. A totality declaration will then ensure that all
input arguments and all output arguments are covered and that computing the
relation terminates. We concentrate here on coverage, and discuss the Twelf
implementation in detail, since it highlights some of the subtle difficulties.



We first state the lemma that values do not step.

values_dont_step: step M M’ → value M → empty → type .
%mode values_dont_step +S +V -I.
nostep_suc : values_dont_step D V I → values_dont_step (s_succ D) (v_s V) I.

The simultaneous pattern where we have value z and step z M’ is omitted in
Twelf. Its coverage checker proves that this case is indeed impossible. Since we are
writing relations, it is not natural to consider the input arguments sequentially.

Next, we translate the Beluga function into a relation in Twelf. One may ex-
pect that the resulting Twelf program, given below, should coverage check. Since
Twelf does not support absurd patterns, we need a lemma empty_implies_anything

that, when given an empty type, allows us to conclude anything; in particular,
we can conclude that two terms M and N are equal.

det: step M N → step M N’ → eq N N’ → type . %mode det +D +E -R.

d_pred_zero : det s_pred_zero s_pred_zero ref.
d_pred_succ : det (s_pred_succ V) (s_pred_succ _ ) ref.
d_pred : det D F ref → det (s_pred D) (s_pred F) ref.
d_succ : det D F ref → det (s_succ D) (s_succ F) ref.

d_pred_succ_empty_1: empty_implies_anything I Eq → values_dont_step D V I
→ det (s_pred (s_succ D)) (s_pred_succ V) Eq.

d_pred_succ_empty_2: empty_implies_anything I Eq → values_dont_step D V I
→ det (s_pred_succ V) (s_pred (s_succ D)) Eq.

Perhaps surprisingly, this proof will not coverage check: Twelf complains
about the clauses d_succ and d_pred. To understand why, we need to inspect the
fully reconstructed type. Here is the result of type reconstruction for d_succ:

d_succ : {M’:term} {N1’:term} {D:step M’ N1’} {F:step M’ N1’}
det D F ref → det (s_succ D) (s_succ F) ref.

Universally quantified variables are written using braces: {M’:term}{N1’:term}
{D:step M’ N1’}{F:step M’ N1’} can be read, “For all M and N1’, and for all deriva-
tions D:step M’ N1’ and F:step M’ N1.” Inspecting the types of D and F, we notice
that they describe the same derivation. This happened because we used ref in the
output position, which constrained some input arguments. The coverage checker
now fails because not all possible input combinations are covered. To get around
this problem, we explicitly prove congruence lemmas. For succ, we prove a lemma
eq_succ stating that if eq M’ N1’ then eq (succ M’) (succ N1’). For pred, we estab-
lish a lemma eq_pred which states that if eq M’ N1’ then eq (pred M’) (pred N1’).
We then modify the cases for d_succ and d_pred:

d_succ: eq_succ R R’ → det D F R → det (s_succ D) (s_succ F) R’.
d_pred: eq_pred R R’ → det D F R → det (s_pred D) (s_pred F) R’.

Besides the difficulties in guaranteeing coverage, if the output constrains
inputs, Twelf’s analysis may run afoul because some variables are free in the
output. This issue arises from our specification of the lemma

empty_implies_anything: empty → eq M M’ → type .

As mentioned previously, Twelf’s totality checker needs to verify that the
relation is a total function and hence the user would typically give the following
mode declaration: %mode empty_implies_anything +I -D.



We notice that we only assigned modes to the explicit arguments, but not
to the implicit arguments M and M’. By default, Twelf will assign M and M’ a
negative (output) mode. But this means they are unconstrained in the output,
and if we interpret this relation as a function, the output of the function is not
uniquely determined. Twelf reports this as an output freeness error. Luckily, we
can force Twelf to treat the implicit arguments M and M’ as inputs by a long-mode
declaration.

Some of the difficulties in verifying coverage in Twelf are due to the relational-
style of writing proofs. By contrast, in Beluga, we write functions that pattern
match on individual arguments, so we can model directly the structure and the
information flow of the informal proof; the justification for all cases being covered
is more transparent.

Delphin Finally, we briefly discuss coverage in Delphin [17], a dependently-typed
functional language which supports writing proofs as recursive functions over LF
objects. One may hope that, as with Beluga, this would avoid the difficulties we
encountered in Twelf. But this is only partially true. Surprisingly, the Delphin
program corresponding to our Beluga program det fails to pass Delphin’s cov-
erage checker; as in Twelf, the Delphin program requires explicit congruence
lemmas. The cause is the same as in Twelf: were we to return ref directly in the
recursive call, type reconstruction constrains the pattern. This design decision
was made to avoid having to propagate the constraints generated when pattern
matching on dependently typed objects.

Summary Our example of proving determinacy of the small-step semantics is
very simple and omits higher-order abstract syntax, but illustrates the subtle
differences in the behavior of the coverage checker in a variety of systems; the
differences come from different approaches to type reconstruction and different
design decisions on when to split where. Agda is the most conservative; its cov-
erage checker splits only if there is a user-given incentive, and does not try to
prove that a given type is empty unless you claim it is. Compared to Twelf, our
functional language avoids pitfalls due to output coverage and free variables,
which are caused by having to implement proofs as relations. Beluga’s type
reconstruction engine constructs the most general type of a pattern together
with a refinement substitution. This affects the behavior of the Beluga coverage
checker: although the algorithms that generate sets of coverage goals are similar
in Twelf, Delphin and Beluga, the set of patterns we derive from the user-written
program is more general than in Twelf and Delphin. Hence, Beluga will accept
some programs that are rejected by Delphin or Twelf.

3 Matching on Contextual Data and Contexts

A unique feature of Beluga is its support for contextual objects and contexts.
To illustrate the issues arising we examine a program that translates System
F terms from higher-order abstract syntax to de Bruijn form. In the source



language, we distinguish types from terms. But we use a uniform approach for
the target language; to distinguish between objects denoting a term and objects
denoting a type, we introduce a type term or typ : type with two inhabitants
typ : term or typ and term:term or typ. We then define a type family obj indexed
by elements term or typ indicating whether the object is a term or a type. We use
de Bruijn indices to represent variables in our target language.

% Types
tp : type .
nat : tp.
arr : tp → tp → tp.
all : (tp → tp) → tp.

% Expressions
exp : type .

lam : tp → (exp → exp) → exp.
app : exp → exp → exp.
tlam : (tp → exp) → exp.
tapp : exp → tp → exp.

% Uniform target language
obj’ : term_or_typ → type .
nat’ : obj’ typ.
arr’ : obj’ typ → obj’ typ → obj’ typ.
all’ : obj’ typ → obj’ typ.

one : obj’ T.
shift: obj’ T → obj’ T.
lam’ : obj’ typ → obj’ term → obj’ term.
app’ : obj’ term → obj’ term → obj’ term.
tlam’: obj’ term → obj’ term.
tapp’: obj’ term → obj’ typ → obj’ term.

The target language uses de Bruijn indices, indexing type variables with re-
spect to tlam-binders and ordinary variables with respect to lam-binders. Finally,
we show the program to translate objects tp to their respective de Bruijn obj’

typ representation. The translation of objects of type exp to their respective de
Bruijn terms of type obj term is then similar.

schema ctx = exp + tp ;
rec typ2typ’ : {g:ctx} tp[g] → (obj’ typ)[ ] = fn t ⇒ case t of
| [h, a:tp] a ⇒ [] one
| [h, x:exp] #p .. ⇒ let [] Db = typ2typ’ ([h] #p ..) in [] Db
| [h, a:tp] #p .. ⇒ let [] Db = typ2typ’ ([h] #p ..) in [] shift Db
| [h] nat ⇒ [] nat’
| [h] arr (T ..) (S ..) ⇒ let [] T’ = typ2typ’ ([h] T ..) in

let [] S’ = typ2typ’ ([h] S ..) in [] arr’ T’ S’
| [h] all λa. T .. a ⇒ let [] T’ = typ2typ’ ([h, a:tp] T .. a) in [] all’ T’ ;

When we recursively analyze objects of type tp, we quickly realize that they
may contain type variables; moreover, since we will call the function typ2typ’ from
the function which translates expressions to de Bruijn terms, and the context g

may contain exp and tp. Hence we first declare the context schema: schema ctx =

exp + tp.
The type of the function typ2typ’ can be read as follows: for all context g

of schema ctx, given a contextual object tp[g], the result is a closed de Bruijn
term of type (obj’ typ)[]. This type guarantees that while the input may contain
variables declared in g, the result is closed: its context is empty.

Three challenges arise in supporting pattern matching on contextual objects
and contexts. First, we need a generic case for variables declared in the context
g. For a concrete bound variable, we can simply refer to it, as in the pattern
[h, a:tp] a. But we also need a case for some other variables from h. We use a
parameter variable #q that stands for some declaration in h to write the case
[h,a:tp] #p .. in the function typ2typ’.

Second, we exploit context matching to analyze the shape of the context.
We need to know the position of a given variable declaration in the context.



Since contexts are ordered, we can peel off one declaration at a time until we
find the given variable. When we pattern match on t of type tp[g] and enter
the branch [h,a:tp] a ⇒ [ ] one, the context variable g is refined to the context
h, a:tp where h is a context variable.

Finally, we distinguish cases on whether we have a type declaration a:tp or a
term declaration x:exp in the context. Since we assign type variables a different
index from term variables, the position of a type declaration is determined with
respect to type variables only, not term variables.

Matching on the shape of the context allows us to walk through the context
and compute the appropriate de Bruijn index. We could modify the implementa-
tion by choosing a uniform source language, similar to how the target language
indexes its objects by term or typ. Instead of a:tp we would have a:obj typ, and
instead of the declaration x:exp, we say x:obj term. The shape of these contexts is
given by schema ctx = some [a:term or typ] obj a, which states that each concrete
declaration in a context can be derived by instantiating a:term_or_typ. When
rewriting the function typ2typ’, we then need to pattern match not only on
the structure of the context, but also on each declaration in the context. The
branch [h, a:tp] a ⇒ [] one becomes [h, a:obj typ] ⇒ [] one; similarly, the pattern
in [h, x:exp] ⇒ #p .. becomes [h, x:obj term]. For the full implementation, see the
electronic appendix [15]. Having generic context schemas and context match-
ing leads to new considerations in coverage. These kinds of programs are not
easily translated to Twelf or Delphin because neither system has contexts that
programmers can directly manipulate and inspect.

4 Foundations of Contextual Coverage

Our central question is: Does a set of patterns cover the type A[Ψ ]? To an-
swer this question, we present a general way of generating a set of patterns
thereby providing a foundation for splitting an object of type A[Ψ ] into different
cases. For example, in the function typ2typ’ we ensure that the set of patterns
Z = {[h,a:tp] a, [h,a:tp] #p .., [h,x:exp] #p .., [h] nat, [h] arr (T ..) (S ..),
[h] all λa. T .. a} covers all elements of type tp[g], that is, every term of type
tp[g] is an instance of some pattern in Z.

We begin by reviewing the foundation of our pattern language. Patterns are
derived from an extension of the logical framework LF where we think of every
LF object within a context. Contextual objects were introduced by Nanevski
et al. [9]. A contextual object M in a context Ψ is written [Ψ ]M and has con-
textual type A[Ψ ]. To precisely define holes in contextual objects, we support
meta-variables. For example, in the pattern [h] arr (T ..) (S ..) the pattern
variables T and S are meta-variables. Meta-variables are associated with a sub-
stitution σ and are written u[σ] in our theoretical foundation. In concrete syntax,
we write T .. for a meta-variable under the identity substitution. We also support
context variables that abstract over concrete contexts, and parameter variables
that abstract over variable declarations [12]. We characterize only normal forms,
since only these are meaningful in LF. We do this by defining normal terms M



and neutral terms R. The syntax guarantees that terms contain no β-redexes,
and the typing rules guarantee that well-typed terms are fully η-expanded.

Here, we omit block declarations of the form Σy1:A1, . . . , yk:Ak. Ak+1, which
group multiple assumptions together so that whenever yi exists, there also exist
yj for all i and j from 1 to k + 1. This feature is not crucial to the main ideas
of coverage, but complicates the description.

Atomic types P ::= a M1 . . .Mn

Types A,B ::= P | Πx:A.B
Normal terms M,N ::= λx.M | R
Neutral terms R ::= c | x | u[σ] | p[σ] | R N
Substitutions σ ::= · | σ ; M | σ , R | idψ

Contexts Ψ,Φ ::= · | ψ | Ψ, x:A
Meta-contexts ∆ ::= · | ∆,u::A[Ψ ] | ∆, p::A[Ψ ] | ψ::W

We distinguish between three kinds of variables: Ordinary bound variables
x and y are bound by λ-abstraction at the LF level; these variables are de-
clared in a context Ψ . Contextual variables stand for open objects, and include
meta-variables u and v, which represent general open objects, and parameter
variables p that can only be instantiated with an ordinary bound variable. Con-
textual variables are introduced in computation-level case expressions, and are
instantiated via pattern matching. Contextual variables are associated with a
postponed substitution σ. The intent is to apply σ as soon as we know the ob-
ject the contextual variable should stand for. The domain of σ thus includes the
free variables of that object, and the type system statically guarantees this.

Our foundation supports context variables ψ which allow us to reason ab-
stractly with contexts, and write recursive computations that manipulate higher-
order data. Context variables, meta-variables and parameter variables are intro-
duced at the computation level.

As types classify objects, and kinds classify types, we introduce the notion
of schemas W that classify contexts Ψ . Context variables, meta-variables and
parameter variables are declared in the meta-context ∆.

Substitutions σ are built from normal terms M and atomic terms R. This is
necessary because when we extend the substitution with a neutral term, we may
not always have its type and hence we cannot guarantee that the neutral term
is also a well-typed normal term. This issue arises when we push a substitution
σ under a lambda-abstraction λx.M and need to extend the substitution σ with
the variable x: If x has a functional type, x is not a well-typed normal term
and must be η-expanded. We do not make the domain of a substitution explicit,
to simplify the theory and avoid having to rename domains. Finally, we have a
first-class notion of identity substitution idψ whose domain is a context variable.
We write [σ]N for substitution application.

We assume that type constants and object constants are declared in a signa-
ture S as pure LF objects, that is, types not containing meta-variables, parameter
variables or context variables. We suppress this signature since it is the same
throughout all derivations.



4.1 Bidirectional Type System

We type data-level terms bidirectionally. Normal objects are checked against a
given type A in the judgment ∆;Ψ ` M ⇐ A, while neutral objects synthesize
their type: ∆;Ψ ` R ⇒ A. Substitutions are checked against their domain:
∆;Ψ ` σ ⇐ Φ.

Data-level normal terms
∆;Ψ, x:A `M ⇐ B

∆;Ψ ` λx.M ⇐ Πx:A.B
ΠI

∆;Ψ ` R⇒ P ′ P ′ = P

∆;Ψ ` R⇐ P
turn

Data-level neutral terms

x:A ∈ Ψ
∆;Ψ ` x⇒ A

var c:A ∈ Σ
∆;Ψ ` c⇒ A

con
u::A[Φ] ∈ ∆ ∆;Ψ ` σ ⇐ Φ

∆;Ψ ` u[σ]⇒ [σ]aΦA
mvar

p::A[Φ] ∈ ∆ ∆;Ψ ` σ ⇐ Φ

∆;Ψ ` p[σ]⇒ [σ]aΦA
param ∆;Ψ ` R⇒ Πx:A.B ∆;Ψ ` N ⇐ A

∆;Ψ ` R N ⇒ [N/x]aAB
ΠE

Data-level substitutions ∆;Ψ ` · ⇐ · ∆;ψ, Ψ ` idψ ⇐ ψ

∆;Ψ ` σ⇐Φ ∆;Ψ ` R⇒A′ [σ]aΦA=A′

∆;Ψ ` (σ ,R)⇐ (Φ, x:A)

∆;Ψ ` σ ⇐ Φ ∆;Ψ `M⇐ [σ]aΦA

∆;Ψ ` (σ ;M)⇐ (Φ, x:A)

We will tacitly rename bound variables, and maintain that contexts and
substitutions declare no variable more than once. Note that substitutions σ are
defined only on ordinary variables x, not on contextual variables u or p. We
also require the usual conditions on bound variables. For example, in ΠI the
bound variable x must be new and cannot already occur in Ψ . This can always
be achieved by α-renaming. The typing rules for neutral terms use hereditary
substitution [· · · ]aA, which preserves canonical forms [9]. Hereditary substitution
is defined recursively, considering both the structure of the term to which the
substitution is applied and the type A of the object being substituted. This
operation has been defined and proved to be terminating [9, 12, 13].

For readability, we omit the subscripts. Since hereditary substitution is de-
cidable and the rules above are syntax-directed, data-level typing is decidable.

4.2 Context Schemas

Schemas classify contexts. In an earlier example, the schema ctx = tp + exp repre-
sented a context which consists of type declarations tp or of term declarations exp.
Using dependent types, we can also define a schema tctx = some[t:term or typ] obj t.

We use + to denote a choice of possible elements in a context, and some allows
us to describe a generic type where each concrete assumption in a context must
be an instance of this generic type. In general, we support grouping multiple
declarations into a block (formally a Σ-type) but we omit it here to concentrate
on the essential ideas.

Schema elements F ::= somex1:A1, . . . xk:Ak blockA
Schemas W ::= (F1 + · · ·+ Fn)∗



Context Ψ checks against schema W

∆ ` · ⇐W

ψ::W ∈ ∆
∆ ` ψ ⇐W

for some k
∆;Ψ ` A ∈ Fk ∆ ` Ψ ⇐ (F1 + · · ·+ Fn)∗

∆ ` Ψ, x:A⇐ (F1 + · · ·+ Fn)∗

To check A ∈ Fk where Fk = somex1:A1, . . . , xk:Ak blockB we verify that
there exists an instantiation σ for x1:A1, . . . , xk:Ak such that A = [σ]B.

4.3 Meta-substitution

Substitution for meta-variables, parameter variables and context variables has
been defined earlier (see [12, 13]). Meta-substitutions provide instantiations for
meta-variables u, parameter variables p and context variables ψ.

We can substitute a normal term M for the meta-variable u of type A[Ψ ] if M
has type A in the context Ψ . Because of α-conversion, the variables substituted
at different occurrences of u may differ, and we write the contextual substitution
as [[Ψ̂ .M/u]](N) (and similarly [[Ψ̂ .M/u]]σ or [[Ψ̂ .M/u]]Φ etc.). Applying [[Ψ̂ .M/u]]
to the closure u[σ] first obtains the simultaneous substitution σ′ = [[Ψ̂ .M/u]]σ,
but instead of returning M [σ′], it eagerly applies σ′ to M . Similar ideas apply
to parameter substitutions. The main difference is that parameter variables can
only be instantiated either by bound variables or other parameter variables. Re-
placing a context variable with a concrete context Ψ is actually straightforward,
since context variables can only appear at the left.

5 Coverage Checking

A coverage goal is a contextual object [Ψ ]M that can have meta-variables, pa-
rameter variables and context variables, all declared in the meta-context ∆. We
write ∆;Ψ `M for the coverage goal. Intuitively, a coverage goal represents all
of its closed instances.

A coverage problem consists of the coverage goal and a set of patterns. In
Beluga, this set of patterns comes from the program. For example, the case
expression in the function typ2typ’ gives the set of patterns

{ h:ctx ; h, a:tp ` a : tp
h:ctx, p::tp[h] ; h, a:tp ` p[idψ1

] : tp
h:ctx, p::tp[h] ; h, x:exp ` p[idψ1 ] : tp
h:ctx ; h ` nat : tp
h:ctx, u::tp[h], v::tp[h] ; h ` arr u[idh] v[idh] : tp
h:ctx, u::tp[h, b:tp] ; h ` all λb.u[idh, b] : tp }

We explicitly state the type of each meta-variable, parameter variable and
context variable; this information is inferred during type reconstruction. In ad-
dition, we write meta-variables and parameter variables as closures.

Previous work by Coquand [2] and Schürmann and Pfenning [20] describes
coverage checking for closed terms, while Schürmann [19, pp. 197–213] formu-
lated coverage for open terms within regular worlds. However, our setting is



different since we directly support contextual objects, explicit contexts and con-
text matching.

Definition 1. A coverage goal ∆;Ψ ` M : A is immediately covered by a
collection of patterns ∆i;Ψi ` Mi : Ai if there exist i and a meta-substitution θ
such that ∆ ` θ : ∆i and ∆; [[θ]]Ψ ` [[θ]]Ai = A and ∆; [[θ]]Ψ ` [[θ]]Mi = M .

Definition 2 (Coverage). A coverage goal ∆;Ψ ` M : A is covered by a set
Z of patterns ∆i;Ψi ` Mi : Ai if every ground instance ·; [[θ]]Ψ ` [[θ]]M : [[θ]]A,
where · ` θ : ∆, is immediately covered by some pattern ∆i;Ψi `Mi : Ai in Z.

To determine if a goal is immediately covered, we have to solve a higher-
order matching problem. Higher-order matching in the dependently typed case
is undecidable [3] and as in the Twelf system, we concentrate on strict pat-
terns [20]. Informally, a pattern is strict if there exists at least one occurrence of
a meta-variable u[σ] where σ is a pattern substitution which maps distinct bound
variables to distinct bound variables. This fragment is slightly more liberal than
the pure higher-order pattern fragment [8].

In the case where a coverage goal is not immediately covered by a set of
patterns, we need to split it and refine it further. Splitting is decomposed into
two phases: splitting inside a context and splitting objects.

5.1 Splitting Inside Contexts

There are two ways we can refine a context: refine its general structure accord-
ing to the context variable’s context schema, or refine the types of concrete
declarations in the context.

Splitting a context variable. First, we can refine the context by splitting on a
context variable; in the running example, we split the variable g into contexts
{[ψ1, x1 : exp], [ψ1, x2 : tp], [·]}, according to the schema of g, which is exp + tp.
This yields three coverage goals, all of which need to be covered:

(1) u::exp[·] ; · ` u[·] : tp
(2) ψ1:ctx, u::tp[ψ1, a:tp] ;ψ1, a:tp ` u[idψ1 , a] : tp
(3) ψ1:ctx, u::exp[ψ1, x:exp] ;ψ1, x:exp ` u[idψ1 , x] : tp

A second example is a modified typ2typ’ function with a uniform source language:
the type exp becomes obj term and the type tp becomes obj typ. When we split a
context variable g of schema some [a:term or typ] obj a, we get two subproblems:

(1) u::exp[·] ; · ` u[·] : obj typ

(2) ψ1:ctx, v::term_or_typ[ψ1],
u::(obj typ)[ψ1, a:obj v[idψ1 ]] ;ψ1, a:obj v[idψ1 ] ` u[idψ1 , a] : obj typ

The splitting depth is controlled by the specified contexts. In typ2typ’, the object
cased upon is in the context [g], and the longest context in a branch is [h, a:tp],
which declares one more bound variable declaration than [g]. One split of [g]



into [ψ1, . . . ] suffices; it is useless to split ψ1, since no branch distinguishes its
contents. In general,

context variable split depth = (length of the longest context in a branch)
− (length of cased-upon context)

Splitting declarations in a context. With dependent types and generic context
elements, we may need to refine declarations. Similar to the typ2typ’ function, a
function to translate obj typ to obj’ typ will branch on the patterns

{[g, a:obj typ] a, [g] nat,
[g, x:obj term] #p .., [g] arr (T ..) (S ..),
[g, a:obj typ] #p .., [g] all λa. T .. a}

Clearly, the second coverage goal, where we refined the context with a generic
declaration x:obj v[idψ1 ] is not covered. We need to split and refine v[idψ1 ]. To
split a declaration, we use the operation defined in Section 5.2. This refines the
second coverage goal into two subcases:

(2.1) ψ1:ctx, u::(obj typ)[ψ1, a:obj typ] ;ψ1, a:obj typ ` u[idψ1 , a] : obj typ

(2.2) ψ1:ctx, u::(obj typ)[ψ1, a:obj term] ;ψ1, a:obj term ` u[idψ1 , a] : obj typ

The user’s contexts control how much we need to split declarations. We now
need to compute a set of coverage goals for each of these coverage problems.

5.2 Splitting an Object

As a guiding example, let us return to the coverage goal ψ1, a:tp ` u[idψ1
, a] : tp.

Because of the existence of canonical forms, the objects of a type are gener-
ated by constants from the signature, variables from the context, and parameter
variables. Splitting will generate the following set of coverage goals:

(G1) ψ1:ctx ;ψ1, a:tp ` a : tp
(G2) ψ1:ctx, p::tp[ψ1] ;ψ1, a:tp ` p[idψ1 ] : tp
(G3) ψ1:ctx ;ψ1, a:tp ` nat : tp
(G4) ψ1:ctx, u::tp[ψ1, a:tp], v::tp[ψ1, a:tp] ;ψ1, a:tp ` arr u[idψ1

, a] v[idψ1
, a] : tp

(G5) ψ1:ctx, u::tp[ψ1, a:tp, b:tp] ;ψ1, a:tp ` all λb.u[idψ1
, a, b] : tp

More formally, we define the generation of objects of contextual type A[Ψ ]
using the rules below and the rules in Figure 1.

∆;Ψ ` Obj(A) � J

∆;Ψ ` Vars (Ψ > P ) � J

∆;Ψ ` Neut (c1 : S(c1) > P ) � J
...

∆;Ψ ` Neut (cn : S(cn) > P ) � J
∆;Ψ ` Obj(P ) � J

Obj-split

∆;Ψ, x:A1 ` Obj(A2) � lamBJ
∆;Ψ ` Obj(Πx:A1.A2) � J

Obj-Π
∆,u::P [Ψ ];Ψ ` u[id(Ψ)] : P � J

∆;Ψ ` Obj(P ) � J
Obj-no-split



J is a continuation of the following form

J ::= covered-byZ | lamBJ | neut (R : x.B > P ) B J

We start the generation of a coverage goal with J = covered-byZ. Once
we have built a normal term M of type A we check whether it is an instance
of one of the patterns in Z; if so, M is covered by the set Z. As we build the
coverage goal and analyze the type A, if A is a function type Πx:B1.B2, we
extend the continuation with the token lam; after building an object of type
B2, we build a λ-abstraction. The token neut (R : x.B > P ) waits for some
object N , to construct an object R N of type [N/x]B.

In summary, given a meta-context ∆, a context Ψ and a type A, we generate
a complete set of coverage goals Gi = ∆i;Ψi ` Mi : Ai and verify that each
coverage goal is immediately covered by at least one pattern in Z.

Two rules could derive ψ1:ctx;ψ1, a:tp ` Obj(tp) � covered-byZ. If we use
the rule Obj-no-split, we generate the premise

ψ1:ctx, u::tp[ψ1, a : tp ; ψ1, a:tp ` u[idψ1
, a] : tp � covered-byZ

This fails since the goal is not immediately covered by a pattern. Using Obj-split,
we produce the leaves: {G1 � covered-byZ, . . . , G5 � covered-byZ}

The splitting operation expressed by the rule Obj-split considers each con-
stant c declared in the signature S and each bound variable from the context to
generate an object of type tp. If Ψ contains a context variable, it also considers
parameter variables. Our formal system is given in a continuation-based style
which facilitates building coverage goals. Our rules leave open the choice between
Obj-split and Obj-no-split, and we discuss our strategy subsequently. Construct-
ing a complete set of coverage goals of atomic type P relies on the following
three mutually recursive judgments (see Figure 1).

∆;Ψ ` Norm M : A � J : Given a normal term M of type A in the meta-
context ∆ and context Ψ , continue with J . Depending on the top (leftmost)
part of J , we take a different action: if J = covered-byZ, we check if the
coverage goal is immediately covered by a pattern in Z (rule Covered-By-Z). If
J = lam B J ′, then Ψ = Ψ ′, x:B and we have not finished building M , but
continue building Norm λx.M : Πx:B.A with the continuation J ′ in the context
Ψ ′ (see rule Normal-Lam). If J = neut (R : x.B > P ) B J ′, we have finished
building a normal term M that was intended as an argument to a neutral term R.
Rule Normal-Cont continues, building a neutral term Neut (R M : [M/x]B > P );
eventually we construct all ofR’s argumentsN1, . . . , Nn such thatRM N1 . . . Nn
has type P .

∆;Ψ ` Neut (R : A > P ) � J : Given a neutral object R of type A, construct
an object R N1 . . . Nn of type P and continue with J . There are three cases.
(1) If A is atomic and unifies with P , we have built a relevant neutral object
and continue with J (see App-+). (2) If A is atomic but cannot be unified with
P , the case is impossible and we trivially succeed with rule App- 6 6+. (3) If R has
type Πx:A.B, we try to build a normal term M : A and extend the continuation



∆;Ψ ` NormM : A � J ∆;Ψ ` Norm (λx.M) : (Πx:A1.A2) � J
∆;Ψ, x:A1 ` Norm M : A2 � lamBJ Normal-Lam

∆;Ψ ` Neut (R M : [M/x]B > P ) � J
∆;Ψ ` Norm M : A � neut (R : x.B > P ) B J Normal-Cont

∆;Ψ `M : A immediately covers ζk where ζk = ∆k;Ψk `Mk : Ak

∆;Ψ ` Norm M : A � covered-by {ζ1, . . . , ζn}
Covered-By-Z

∆;Ψ ` Neut (R : A > P ) � J
∆;Ψ ` Q 6 6+ P

∆;Ψ ` Neut (R : Q > P ) � J
App- 6 6+

∆;Ψ ` Q + P / (θ,∆′)
∆′; [[θ]]Ψ ` [[θ]]R : [[θ]]P � [[θ]]J
∆;Ψ ` Neut (R : Q > P ) � J

App-+

∆;Ψ ` Obj(A) � neut (R : x.B > P ) B J
∆;Ψ ` Neut (R : Πx:A.B > P ) � J

App-Π

∆;Ψ ` Vars (Ψ > P ) � J

∆(ψ) = F1 + · · ·+ Fm

∆;Ψ ` PVars (ψ : F1 > P ) � J
...

∆;Ψ ` PVars (ψ : Fm > P ) � J
∆;Ψ ` Vars (ψ > P ) � J

∆;Ψ ` Neut (x : A > P ) � J ∆;Ψ ` Vars (Φ > P ) � J
∆;Ψ ` Vars (Φ, x:A > P ) � J ∆;Ψ ` Vars (· > P ) � J

∆;Ψ ` PVars (ψ : F > P ) � J

∆,∆p, p::[σ]B[ψ];Ψ ` Neut (p[idψ] : [σ]B > P ) � J
∆p = u1::Ai[ψ], . . . uk::Ak[ψ]
σ = u1[idψ], . . . , uk[idψ]

∆;Ψ ` PVars (ψ : somex1:A1, . . . , xk:Ak blockB > P ) � J

Fig. 1. Coverage checking rules

J with neut (R : x.B > P ). Once we have completed the term M , we will
continue to build the neutral term R M of type [M/x]B.

∆;Ψ ` Vars (Ψ > P ) � J : Since a neutral object of type P may either be built
from a constant from the signature or from a variable from Ψ , this judgment
generates all variable cases. We will iterate through the context Ψ , and for each
variable declaration x : A ∈ Ψ , we build a neutral term Neut (x : A > P ). If the
context Ψ contains a context variable ψ, we also need to generate generic variable
cases: we look up ψ’s context schema F1 + . . .+Fn, and for each schema element
Fi, we build a parameter variable using PVars (Fi : ψ). The parameter variable’s
type can be derived from a schema element Fi = somex1:A1, . . . , xk:Ak blockB
as follows: Let σ be a substitution instantiating x1, . . . , xn with new meta-
variables u1[idψ], . . . , un[idψ]. Then the type of the new parameter variable p will
be ([σ]B)[ψ], and we continue building the neutral term Neut (p[idψ] : [σ]B > P ).

In earlier work [4], we proved the object coverage checking rules sound. This
proof can be extended to also prove soundness of the overall coverage algorithm,
which includes context splitting.



5.3 Implementation

The core of the coverage checker in Beluga can be viewed as a function

check(Z,A[Ψ ],maxContextVarSplit,maxDependentSplit,maxTermSplit)

where Z is a set of (contextual) patterns—the guards of the case expression—and
A[Ψ ] is the type of the expression being cased upon. The max- parameters limit
the depth of splitting for context variables (Section 5.1), dependent arguments
in contexts (Section 5.1), and terms (Section 5.2).

We attack each coverage problem (each case- or let-expression) by making
a sequence of calls to check: we will first split on the context Ψ , and then gen-
erate a set of coverage goals for A. The parameters maxContextVarSplit and
maxDependentSplit control context splitting. The last parameter maxTermSplit
controls the depth of the coverage goal.

As mentioned, the rules in Figure 1 leave open the choice of whether to
use Obj-no-split or Obj-split. In our implementation, the splitting is guided by a
function depth(M), which gives an upper bound on how deeply to split.

depth(λx.M) = depth(M)

depth(u[σ]) = 0

depth(c M1 . . . Mn) = 1 + max(depth(M1), . . . ,depth(Mn))

depth(p[σ] M1 . . . Mn) = 1 + max(depth(M1), . . . ,depth(Mn))

depth(x M1 . . . Mn) = 1 + max(depth(M1), . . . ,depth(Mn))

If the user stated that a given type is empty using the keyword impossible ,
then we initialize the splitting depth to 1.

The overall process is as follows: Follow rule Obj-no-split, generating a meta-
variable u::P [Ψ ], and check if the resulting coverage goal is immediately covered.
If not, and the current splitting depth exceeds maxTermSplit, fail. Otherwise,
increment the current splitting depth, refine type P [Ψ ] following the rule Obj-split
to generate coverage subgoals, and check that each is covered.

We begin with maxTermSplit = 0, which forbids term splitting and makes
us use Obj-no-split. This is more useful than it seems: many let-expressions have
patterns of this form. If this first call fails, we increment maxTermSplit to allow
slightly deeper splitting. We continue until we found a covering set or max-
TermSplit exceeds the depth of the deepest pattern in Z. If we found a covering
set, coverage succeeds for that case- or let-expression. Otherwise, splitting at the
depth of the deepest pattern in Z was not enough to find a covering set, and
coverage fails.

There are several additional considerations:

Subordination When we generate a meta-variable in the rule Obj-no-split, we al-
low the meta-variable to depend on the current context Ψ , but some declarations
in Ψ may never be relevant. Hence, we create the meta-variable in a strength-
ened context Ψ ′. To put it differently, the current context Ψ can be obtained
by weakening Ψ ′. Following Virga [21, pp. 55–59], we compute a subordination



relation—a dependency graph of all the types in the signature. For example, if
exp objects cannot appear in terms of tp objects, then the declaration x:exp is
irrelevant when analyzing a tp object. Hence, when we create a meta-variable of
type tp in a context g, x:exp, we generate the meta-variable u of type tp[g]. The
same applies to parameter variables.

Order of splitting In applying the coverage rules, we need to choose how deeply
to split; we also need to choose the order in which to split arguments.

For a constructor c M1 . . . Mn, we split the arguments from right to left.
In the dependently typed setting, the leftmost arguments are often index argu-
ments, so splitting on Mn will constrain M1. Beluga allows index arguments to
be made implicit and inferred during type reconstruction, so the first arguments
may not even be visible to the user. By splitting from right to left, we always be-
gin by splitting on arguments the user wrote. Unfortunately, the order in which
we split arguments has an impact beyond performance [20]. Some splits cannot
be computed because their unification problems lie outside the decidable pattern
unification fragment. Our implementation follows in this regard the good prac-
tices implemented in Twelf’s coverage checker, but there are subtle differences:
for example, given multiple arguments the coverage checker can split on, Twelf
prefers arguments whose type is non-recursive (such as the bool type above).
Splitting on non-recursive types seems “safe” because it always yields a finite
number of subcases, and is sometimes necessary.

Delphin splits on the argument that does not occur as part of an index of
another splittable argument and that yields the smallest number of subgoals.
In Beluga, we simply split from right to left. Compared to other systems, users
have more control over what arguments to split where: they can always split off
multiple arguments sequentially and even control the splitting depth, and hence
the performance, by factoring patterns.

6 Conclusion and Future Work

We have used the coverage checker on a wide range of examples: from mech-
anizing proofs from [16] to proofs from the Twelf repository. We require fewer
lemmas to work around some of the limitations found in other systems, which
makes the development of proofs more straightforward. While we found simul-
taneous pattern matching on multiple arguments to be convenient, users often
prefer to split arguments sequentially and explicitly prove that cases are im-
possible. Being able to factor patterns into sequential splits gives the user more
control and allows users to be very explicit about individual steps.

There are two improvements we plan to explore: (1) Built-in support for
simultaneous patterns: At the moment, users need to first define a pair, and
subsequently pattern match on this object. This can be awkward. Built-in sup-
port for simultaneous patterns would allow examples to be written more simply.
This is largely an engineering question. (2) We plan to implement a refined strat-
egy to calculate the depth of a pattern; currently, given a case expression with



one pattern [a:tp] arr nat (arr (arr S U) a), Beluga will potentially split the first
argument of arr to a depth of 3, even though only the second argument needs
to be split that deeply. This will lead to overall improved performance and more
meaningful error messages.
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Appendix

6.1 Proving determinacy of small-step semantics using simultaneous
pattern matching in Beluga

While it is often natural to specify case-splits sequentially, i.e. first splitting on
one argument and subsequently splitting on another arguments, being able to
split simultaneously on both arguments may lead to more compact proofs.

At this point, Beluga does not support built-in tuples; therefore to split on
(step M N1)[] and (step M N2)[] simultaneously, we first define a new type family
steps_to_terms indexed by three terms, i.e. M, N1 and N2. It has one constructor
andalso which takes as the first argument the object step M N1 and as a second
argument the object step M N2. The determinacy proof is then implemented as a
function which takes as input an object of type steps_to_terms M N1 N2.

steps_to_terms: term → term → term → type .
andalso: step M N1 → step M N2 → steps_to_terms M N1 N2.

rec det : (steps_to_terms M N1 N2)[] → (equal N1 N2)[] =
fn s ⇒ case s of
| [] andalso (s_succ D) (s_succ F) ⇒

let [] ref = det ([] andalso D F) in [] ref

| [] andalso (s_pred_zero) (s_pred_zero) ⇒ [] ref
| [] andalso (s_pred_succ _ ) (s_pred_succ _ ) ⇒ [] ref
| [] andalso (s_pred D) (s_pred F) ⇒

let [] ref = det ([] andalso D F) in [] ref

% Empty cases for pred
| [] andalso (s_pred D) (s_pred_succ V ) ⇒

impossible values_dont_step ([] D) ([] v_s V) in []
| [] andalso (s_pred_succ V ) (s_pred D) ⇒

impossible values_dont_step ([] D) ([] v_s V) in []
;

We note that simultaneously pattern matching leads to an even more com-
pact proof, since Beluga can prove automatically that some combinations are
impossible. For example, there is no case for the pattern [] andalso s_pred_zero

(s_pred D) or [] andalso (s_pred D) s_pred_zero. Both cases can be proven auto-
matically to be impossible by our coverage checker.

Adding built-in support for simultaneous patterns so the user would not need
to define a specific type-family steps_to_terms, is largely an engineering question
which we plan to address in the future. Our experience shows that simultaneous
patterns are sometime useful, in particular for the expert user; for novices, we
found sequential patterns often more convenient and easier to understand why all
cases are covered. Sequential patterns model very closely what would happen in
an interactive theorem prover or even on paper, where we split on one argument
after another.

6.2 Proving the determinacy of small-step semantics in Agda

We show the implementation of the function det in Agda below. The full im-
plementation in Agda is in the electronic appendix [15]. In Agda, we typically



pattern match simultaneously on multiple inputs. To pattern match on the result
of a function call we use a with clause.

det : {m : Tm} → {n1 : Tm} → {n2 : Tm} →
Step m n1 → Step m n2 → Eq n1 n2

det (s_succ t) (s_succ t’) with det t t’
... | ref = ref
det (s_pred_zero) (s_pred_zero) = ref
det (s_pred_succ _) (s_pred_succ _) = ref
det (s_pred t) (s_pred t’) with det t t’
... | ref = ref
-- Impossible cases for pred
det (s_pred t) (s_pred_succ nv) with values_dont_step t (v_s nv)
... | ()
det (s_pred_succ nv) (s_pred t) with values_dont_step t (v_s nv)
... | ()
det (s_pred ()) (s_pred_zero)
det (s_pred_zero) (s_pred ())

Absurd patterns, i.e. objects whose type is empty and hence it is impossible
to derive such an object, are written using (). So for example,

det (s_pred_zero) (s_pred ())

describes the case where the first argument matches s_pred_zero and the sec-
ond argument matches s_pred (). The use of an absurd pattern as an argument
to the constructor s_pred allows us to state explicitly that it is impossible to
derive an object of type step z N2’.

Let us compare this program with the cases we write in Beluga. We note
that some cases are proven automatically in Beluga. For example, in Beluga, we
accept the case

fn s1 ⇒ fn s2 ⇒ case s1 of
...
| [] s_pred_zero ⇒ let [] s_pred_zero = s2 in [] ref

The reason is the following: to prove that we have covered all cases, coverage
will generate possible objects of the type (step z N2)[], called coverage goals, and
then check whether each coverage goal is an instance of the patterns specified
by the programmer.

Coverage will start with the constructors which could have been used to
construct an object s2 of type (step z N2) There are two and it will generate two
coverage goals: [] s_pred_zero and [] s_pred F.

Since we only specified one branch for s2, namely the pattern [] s_pred_zero

, coverage will fail, because not both coverage goals match this single branch.
Hence, Beluga will then try to refine the coverage goals further, by splitting F

which has type step z N2’. Coverage will now realize that there is no possible
way to ever construct an object F of type step z N2’, and hence it will remove
[] s_pred F from the set of coverage goals. It now only needs to show whether
the cover goal [] e_pred_zero is matched by one of the branches which of course
is true.

Comparing the Agda program to the program in Beluga where we write
simultaneous patterns, the difference in the approach to coverage and proving
cases automatically impossible becomes even clearer.



6.3 Proving the determinacy of small-step semantics in Delphin

In this section, we show the proof of determinacy in Delphin.

fun det : <step M N1> → <step M N2> → <eq N1 N2> =
fn <s_succ D> <s_succ F> ⇒ eq_succ (det <D> <F>)
| <s_pred_zero> <s_pred_zero> ⇒ <ref>
| <s_pred_succ V> <s_pred_succ _ > ⇒ <ref>
| <s_pred D> <s_pred F> ⇒

eq_pred (det <D> <F>)
| <s_pred D> <s_pred_succ V > ⇒

empty_implies_anything (values_dont_step <D> <v_s V>)
| <s_pred_succ V > <s_pred D> ⇒

empty_implies_anything (values_dont_step <D> <v_s V>)

;

Delphin is closely following Twelf. As in Twelf, we observe that we need to
prove explicitly congruence lemmas. This has the same cause as in Twelf: were
we to return <ref> directly, type reconstruction constrains the pattern. This is
visible from the type of the offending branch:

WARNING: Match Non-Exhaustive Warning:
[<M : term>] [<N1 : term>] [<D : step M N1>]
[<N2 : term>] [<F : step M N2>]
((<succ M> and <succ N> and

<s_succ M N D> and <succ N2> and <s_succ M N2 F>) ⇒ ...)

Delphin claims that this more general branch is missing. The reason lies in
Delphin’s type reconstruction engine. The branch

<s_succ D> <s_succ F> ⇒ let val <ref> = det <D> <F> in <ref> end

will be reconstructed such that D has type step M N1 and F will have the same type
step M N1. It may be a bit surprising, since we declared a more general pattern
where D has type step M N1 and F has type step M N2. Only in the body of the
branch do we learn that indeed N1 must be identical to N2. Typically, dependently
typed functional languages do not allow the pattern to learn more information
from the body of a branch, since this goes against the flow of information in a
functional program. The motivation behind this design decision has to do with
the desire to avoid propagating constraints which are typically generated when
pattern matching on dependently typed objects.

This has some unexpected consequences. Functions defined by patterns will
refine types and in fact the whole branch, i.e. patterns together with the body
is viewed together as a type-reconstruction problem. On the other hand, case-
analyzing objects in Delphin will not refine the types. Hence, the following would
work:

fun values_dont_step : <step M M’> → <value M> → <empty> =
fn <S> <v_s V’> ⇒

(case <S> of <s_succ S’> ⇒ values_dont_step <S’> <V’>)
| <S> <v_z> ⇒ step_zero_impossible <S>
;

But rewriting this program into a sequential pattern match using case-expression
will not type-check.



fun step_zero_impossible : <step z M’> → <empty> =
(fn . ) ;

fun values_dont_step : <step M M’> → <value M> → <empty> =
fn <S> <V> ⇒
case <V> of

<v_s V’> ⇒ (case <S> of <s_succ S’> ⇒ values_dont_step <S’> <V’>)
| <v_z> ⇒ step_zero_impossible <S>
;

However, this will give a type error:

Incompatible types: Delphin Unification Failed: Constant clash
Expected Type: <value (succ X1)>
Actual Type: <value z>

Once we pattern match V which has type value M against v_s V’ which has
type value (succ M’), the object M is fixed to be succ M’ and since the second
pattern v_z will have type value z instead of value (succ M’), Delphin produces a
type error.


