
Coverage checking contextual objects

Brigitte Pientka

McGill University, Montreal, Canada,
bpientka@cs.mcgill.ca

Abstract. We reconsider the question: Does a set of patterns cover all
objects of a given type? This is straightforward in the simply-typed set-
ting, but undecidable in the presence of dependent types. We revisit this
question in the setting of contextual objects where objects are closed with
respect to a context and contexts are intensional, i.e. their structure can
be observed by pattern matching. Our algorithm generalizes and extends
prior work on coverage checking of closed LF objects by Pfenning and
Schürmann to contextual objects and more generally to datatypes which
are indexed by contextual objects. In particular, we describe the design
and implementation of a coverage algorithm for Beluga programs, a rich
dependently typed programming and proof environment which supports
contextual objects and contexts, and prove its correctness. Beluga’s cov-
erage algorithm has been used on a wide range of examples, including
all the examples from the Twelf repository. Most recently, we have also
used the presented algorithm to check coverage of data-types indexed by
contextual objects.

1 Introduction

Rich programming and proof environments based on dependent types play an
important role when verifying and certifying properties about software systems
because they allow us to statically guarantee powerful invariants about the run-
time behaviour of the software. To specify rich safety policies, often given by
axioms and inference rules, intrinsic support for variable binding, fresh name
generation, renaming, capture-avoiding substitution, and representing and ma-
nipulating a context of assumptions is convenient and can substantially lower the
burden on programmers. Contextual LF [7] which extends the logical framework
LF [5] with the power of contexts and contextual objects provides an elegant
foundation for these tasks. It supports higher-order abstract syntax encodings
as in LF; however, unlike LF, it supports contexts to represent assumptions and
packs an “open” LF object M of type A together with the context Ψ in which
it is meaningful thereby obtaining a closed contextual object Ψ̂ .M of type A[Ψ]
where Ψ̂ describes the bound variables which M may refer to. Ψ̂ .M has the
contextual type A[Ψ].

In this paper, we consider the question: Does a set of contextual patterns
cover all objects of a given contextual type? The question of coverage is straight-
forward in the simply-typed setting, but undecidable in the presence of depen-
dent types. The main problem is that knowing when a type is empty is undecid-
able [6]. Coverage for dependently type objects has been first investigated by

Coquand [3]. Subsequently, coverage of closed LF objects has been investigated
by Pfenning and Schürmann [18]. This paper generalizes and extends their work
on closed LF objects to contextual objects where objects are closed with respect
to a context and contexts are intensional, i.e. their structure can be observed by
pattern matching.

Building on earlier work [4] we present a sound theoretical foundation for
coverage of contextual objects and contexts. We have designed and implemented
a coverage algorithm as part of Beluga [9, 11], a dependently-typed program-
ming and proof environment which supports programming with contextual LF
objects. Our coverage algorithm splits incrementally objects and also supports
absurd patterns which allow the programmer to explicitly state that a given case
is impossible. We have used it on a wide range of examples, from mechanizing
proofs about programming languages from Pierce’s textbook [13] to examples we
translated from the Twelf repository such as the Church-Rosser theorem for the
simply-typed lambda-calculus and cut elimination. Comparing our experience
with these examples to other related systems such as Twelf [8] and Delphin [14,
15] shows that many issues are avoided (see [12]). The implementation of the cov-
erage checker is transparent and its performance is competitive. Most recently,
we have also employed the presented algorithm to check coverage of data-types
indexed by contextual LF objects [2] and we can inspect such indices via pattern
matching.

The paper is organized as follows: We show the translation between two
different representations for terms both using higher-order abstract syntax in
Beluga. Our example exploits pattern matching on contexts, contextual objects
and on context relations. Based on this examples, we describe the high-level
idea behind coverage. We then introduce the foundation of contextual objects
and give a sound theoretical foundation for coverage in this setting. Finally, we
describe some of the features of our coverage implementation.

2 Matching on Contexts and Contextual Data

To illustrate the issues arising when modelling formal systems, we consider trans-
lating between two different representations for polymorphic lambda-terms. The
first representation is our standard specification using tp to define types and tm

to describe terms. We use higher-order abstract syntax to model the binders in
our object language, the polymorphic lambda calculus, with binders in the meta-
language. The second representation uses a uniform approach for representing
the lambda-calculus; to distinguish between objects denoting a term and ob-
jects denoting a type, we introduce a type term or typ:type with two inhabitants
typ:term or typ and term:term or typ. We then define a type family obj indexed by
elements term or typ indicating whether the object is a term or a type.

To translate between the two representations, we need to translate objects
obj term to tm and objects obj typ to tp. As we analyze terms, we traverse lambda-
terms and the body of a lambda-term is not necessarily closed any more. Hence
our translation in fact translates objects obj term in a context ψ containing obj T

% Types
tp : type .
nat’ : tp.
arr’ : tp→ tp→ tp.
all’ : (tp→ tp)→ tp.

% Terms
tm : type .
lam’ : tp→ (tm→ tm)→ tm.
app’ : tm→ tm→ tm.
tlam’: (tp→ tm)→ tm.
tapp’: tm→ tp→ tm.

% Uniform language
obj : term_or_typ→ type.
nat: obj typ.
arr: obj typ→ obj typ→ obj typ.
all: (obj typ→ obj typ)→ obj typ.

lam : obj typ→ (obj term→ obj term)→ obj term.
app : obj term→ obj term→ obj term.
tlam: (obj typ→ obj term)→ obj term.
tapp: obj term→ obj typ→ obj term.

Fig. 1. Two representations for the polymorphic lambda calculus

declarations where T is either term or typ to tm objects in a context φ containing tm

and tp declarations. To translate variables in the context ψ to their corresponding
variable in φ, we also must know that ψ and φ are related, i.e. the i-th declaration
in ψ corresponds to the i-th declaration in φ.

We implement this translation in Beluga [9, 11] is a dependently-typed func-
tional language that supports pattern matching on contexts and contextual LF
objects. We call a object M in a context ψ a contextual object and write it as
[ψ . M] in our concrete syntax. It has the contextual type [ψ.A] where M has type
A in the context ψ.

Beluga also provides support for stating the relationship between contexts as
an indexed datatype [2] which we use to state the relationship between ψ and φ
in our running example.

We begin by stating the schema for the two different contexts. tctx is the
schema for the context ψ, a context containing tm and tp declarations. ctx is the
schema for the context φ, a context containing declarations of type obj T where
T is either term or typ.

schema tctx = tm + tp ;
schema ctx = some [t:term_or_typ] obj t;

We state how a context of schema tctx is related to a context ctx using an
indexed data-type CtxRel next. The keyword ctype indicates that we are defining
an indexed data-type, in contrast to an LF type.

datatype CtxRel : {ψ:ctx}{φ:tctx} ctype =
| CtxRel_nil : CtxRel [] []
| CtxRel_tm : CtxRel [ψ] [φ] → CtxRel [ψ, x:obj term] [φ, x:tm]
| CtxRel_tp : CtxRel [ψ] [φ] → CtxRel [ψ, x:obj typ] [φ, x:tp]
;

In Figure 2, we implement a recursive function copy_tp which states: Given
CtxRel [ψ] [φ] and [ψ.obj typ] we produce a corresponding object [φ.tp]. A sim-
ilar function can be implemented for translating terms.

Several challenges arise in supporting contexts, contextual objects and in-
dexed data-types. To translate variables from the context ψ to their corre-
sponding variables in φ, we must observe their position in ψ and map them
to their corresponding position in φ. The first pattern [ψ, x:obj typ. x] analyzes

rec copy_tp : CtxRel [ψ] [φ]→ [ψ. obj typ] → [φ. tp]=
fn r ⇒ fn m ⇒ case m of
| [ψ . nat] ⇒ let(r’ : CtxRel [ψ] [φ]) = r in [φ . nat’]

| [ψ, x: obj typ . x]⇒
(let CtxRel_tp (r:CtxRel [ψ] [φ])= r in [φ,x:tp . x])

| [ψ, x: obj typ . #p ..] ⇒
let CtxRel_tp r’ = r in
let [φ . R ..] = copy_tp r’ [ψ . #p ..] in

[φ, x:tp . R ..]

| [ψ, x: obj term . #p ..] ⇒
let CtxRel_tm r’ = r in
let [φ . R ..] = copy_tp r’ [ψ . #p ..] in

[φ, x:tm . R ..]

| [ψ . arr (T ..) (S ..)]⇒
let [φ . R ..] = copy_tp r [ψ . T ..] in
let [φ . Q ..] = copy_tp r [ψ . S ..] in

[φ . arr’ (R ..) (Q ..)]

| [ψ . all λx. T .. x] ⇒
let [φ, x:tp . R .. x] = copy_tp (CtxRel_tp r) [ψ, x:obj typ. T .. x] in

[φ . all’ λx.R .. x]
;

Fig. 2. Translating between two HOAS representations for the polymorphic lambda-
calculus

the structure of the context. If the variable is the last one in the context ψ, x:obj

typ, then we know that r has type CtxRel [ψ,x:obj typ] [φ]. By further pattern
matching on r, we know that φ is indeed of the shape φ,x:tp, since r can only
be CtxRel_tp (r:CtxRel [ψ] [φ]). By giving a type annotation to the argument r,
we obtain the name φ, the context related to ψ, and return [φ,x:tp. x].

While for a concrete bound variable, we can simply refer to it, as in the
pattern [ψ, x:obj typ. x], we also need a case for some other variables from ψ.
We use a parameter variable #p that stands for some declaration in ψ to write
the case [ψ,x:obj typ. #p ..]. We associate the parameter variable #p with the
identity substitution, written as .. in the concrete syntax. As a consequence,
#p has type [ψ. obj typ] and we can only instantiate #p with a variable declared
in the context ψ. Were we to associate #p with the identity substitution .. x,
the type of #p would be [ψ,x:obj typ. obj typ] and we can instantiate #p with any
variable declared in the context ψ, x:obj typ.

By pattern matching on the context relation r we know that ψ, x:obj typ is
related to φ, x:tp. We then recursively translate [ψ.#p ..] using CtxRel [ψ] [φ].

The remaining cases are straightforward. To translate [ψ,x:obj tm. λ#p ..] we
proceed as above. To translate [ψ. arr (T ..) (S ..)], we recursively translate (

T ..) and (S ..). To translate [ψ. all λx. T .. x], we recursively translate T .. x

in the extended context ψ,x:obj typ and extend the context relation.
To summarize the challenges: we exploit context matching to analyze the

shape of the context. Contexts are ordered, we can peel off one declaration at a
time until we find the given variable. We pattern match on declarations occurring
in contexts. We pattern match on contextual objects, i.e. objects which are closed

with respect to a context which leads us to consider generic variable cases. We
rely on higher-order unification. The given example demonstrate that context
matching and contextual objects leads to new considerations in coverage.

3 Background: Contextual LF and contexts

Our central question is: Does a set of patterns cover the type [ψ. A]? To answer
this question, we present a general way of generating a set of patterns thereby
providing a foundation for splitting an object of type [ψ.A] into different cases.
For example, in the function copy_tp we ensure that the set of patterns

Z = { [ψ,x:obj typ. x], [ψ,x:obj typ. #p ..], [ψ,x:obj term. #p ..], [ψ. nat],
[ψ. arr (T ..) (S ..)], [ψ. all λx. T .. x] }

covers all elements of type [ψ.obj typ], i.e. every term of type [ψ.obj typ] is an
instance of some pattern in Z. To check coverage of a contextual object, we also
need to be able to decide when a set of patterns covers a given context schema.
More generally, coverage for contextual objects also is at the heart of checking
coverage of indexed datatypes such as CtxRel [ψ] [φ].

3.1 Contextual LF

Since patterns are derived from an extension of the logical framework LF where
we think of every LF object within a context, we first review contextual LF. Con-
textual types were introduced by Nanevski et al. [7] and subsequently extended
and used in [9].

Atomic types P ::= a M1 . . .Mn

Types A,B ::= P | Πx:A.B
Normal terms M,N ::= λx.M | R
Neutral terms R ::= c | x | u[σ] | p[σ] | R N
Substitutions σ ::= · | σ ; M | σ , R | idψ
Contexts Ψ,Φ ::= · | ψ | Ψ, x:A

In our theoretical foundation, a contextual object M in a context Ψ is written
[Ψ]M and has contextual type A[Ψ]. This is in contrast to the concrete syntax
used in the examples where we write [Ψ.M] which has type [Ψ.A]. To precisely de-
fine holes in contextual objects, we support meta-variables. For example, in the
pattern [ψ. arr (T ..) (S ..)] the pattern variables T and S are meta-variables.
Meta-variables are associated with a substitution σ and are written u[σ] in our
theoretical foundation. In concrete syntax, we write T .. for a meta-variable un-
der the identity substitution. We also support context variables that abstract
over concrete contexts, and parameter variables that abstract over variable dec-
larations [9]. We characterize only normal forms, since only these are meaningful
in LF. We do this by defining normal terms M and neutral terms R and em-
ploying a normalizing hereditary substitution. Hereditary substitution is defined
recursively, considering both the structure of the term to which the substitu-
tion is applied and the type A of the object being substituted. It is written as

[∗]A where ∗ stands for types, terms, etc. This operation has been defined and
proved to be terminating [7, 9, 10]. The syntax guarantees that terms contain
no β-redexes, and the typing rules guarantee that well-typed terms are fully
η-expanded.

We distinguish between three kinds of variables: Ordinary bound variables
x and y are bound by λ-abstraction at the LF level; these variables are de-
clared in a context Ψ . Contextual variables stand for open objects, and include
meta-variables u and v, which represent general open objects, and parameter
variables p that can only be instantiated with an ordinary bound variable. Con-
textual variables are introduced in computation-level case expressions, and are
instantiated via pattern matching. Contextual variables are associated with a
postponed substitution σ. The intent is to apply σ as soon as we know the ob-
ject the contextual variable should stand for. The domain of σ thus includes the
free variables of that object, and the type system statically guarantees this.

Substitutions σ are built from normal terms M and atomic terms R. This is
necessary because when we extend the substitution with a neutral term, we may
not always have its type and hence we cannot guarantee that the neutral term
is also a well-typed normal term. This issue arises when we push a substitution
σ under a lambda-abstraction λx.M and need to extend the substitution σ with
the variable x: If x has a functional type, x is not a well-typed normal term
and must be η-expanded. We do not make the domain of a substitution explicit,
to simplify the theory and avoid having to rename domains. Finally, we have a
first-class notion of identity substitution idψ whose domain is a context variable.
We write [σ]N for substitution application.

Our foundation supports context variables ψ which allow us to reason ab-
stractly with contexts, and write recursive computations that manipulate higher-
order data. Context variables, meta-variables and parameter variables are intro-
duced at the computation level.

3.2 Meta-objects, Meta-types, Meta-Substitutions, Meta-Contexts

We lift contextual LF objects to meta-types and meta-objects which are em-
bedded into computation-level expressions. This allows a uniform treatment of
all meta-objects. Meta-objects are either contextual objects written as Ψ̂ .R or
contexts Ψ .

Context schemas G ::= ∃
−−−→
(x:A).B | G+ ∃

−−−→
(x:A).B

Meta Types U ::= P [Ψ] | #A[Ψ] | G
Meta Objects C ::= Ψ̂ .R | Ψ
Meta substitutions θ ::= · | θ, C/X
Meta-context ∆ ::= · | ∆,X:U

There are three different meta-types: P [Ψ] denotes the type of a meta-variable
u and stands for a general contextual object Ψ̂ .R. #A[Ψ] denotes the type of a
parameter variable p and it stands for a variable object, i.e. either Ψ̂ .x or Ψ̂ .p[π]
where π is a variable substitution. A variable substitution π is a special case

for general substitutions σ; however unlike p[σ] which can produce a general
LF object, p[π] guarantees we are producing a variable. Finally, G describes the
schema (i.e. type) of a context.

The tag # on the type of parameter variables is a simple syntactic device
to distinguish between the type of meta-variables and parameter variables. It
does not introduce a subtyping relationship between the type #A[Ψ] and the
type A[Ψ] (as for example in [15]). The meta-context in which an LF object
appears uniquely determines if X denotes a meta-variable, parameter variable
or context variable. We use the following convention: ifX denotes a meta-variable
we usually write u or v; if it stands for a parameter-variable, we write p and for
context variables we use ψ.

As types classify objects, and kinds classify types, we introduce the notion
of schemas G that classify contexts Ψ . Context schemas consist of different
elements ∃

−−−→
(x:A).B which are built using +. Intuitively, this means a concrete

declaration in a context must be an instance of one of the elements specified
in the schema. For example, a context x:obj term, y:obj typ will check against
the schema ∃T :term or typ.obj T which was stated as some [t:term_or_typ] obj t

in the concrete syntax.
The uniform treatment of meta-terms, called C, and meta-types, called U ,

allows us to give a compact, uniform definition of meta-substitutions θ and meta-
contexts ∆. This also simplifies the definitions for coverage.

3.3 Bidirectional Type System

We type contextual terms bidirectionally. Normal objects are checked against a
given type A in the judgment ∆;Ψ ` M ⇐ A, while neutral objects synthesize
their type: ∆;Ψ ` R ⇒ A. Substitutions are checked against their domain:
∆;Ψ ` σ ⇐ Φ. We assume that type constants and object constants are declared
in a signature S as pure LF objects, that is, types not containing meta-variables,
parameter variables or context variables. We suppress this signature since it is
the same throughout all derivations.

The typing rules are given in Figure 3.We will tacitly rename bound vari-
ables, and maintain that contexts and substitutions declare no variable more
than once. Note that substitutions σ are defined only on ordinary variables x,
not on contextual variables u or p. We also require the usual conditions on
bound variables. This can always be achieved by α-renaming. The typing rules
for neutral terms use hereditary substitution [· · ·]A, which preserves canonical
forms [7]. Since hereditary substitution is decidable and the rules above are
syntax-directed, data-level typing is decidable.

The typing rules for meta-objects and meta-substitutions are straightforward
and revert to the contextual LF typing rules. We omit here the rules stating
when meta-types and meta-contexts are well-formed and show only the typing
rules for meta-term and meta-substitutions.

Neutral Terms ∆;Ψ ` R⇒ A

Ψ(x) = A

∆;Ψ ` x⇒ A

∆(p) = #A[Φ] ∆;Ψ ` σ ⇐ Φ

∆;Ψ ` p[σ]⇒ [σ]ΦA

Σ(c) = A

∆;Ψ ` c⇒ A

∆(u) = P [Φ] ∆;Ψ ` σ ⇐ Φ

∆;Ψ ` u[σ]⇒ [σ]ΦP

∆;Ψ ` R⇒ Πx:A.B ∆;Ψ `M ⇐ A

∆;Ψ ` RM ⇒ [M/x]AB

Normal Terms ∆;Ψ `M ⇐ A

∆;Ψ ` R⇒ P P = Q

∆;Ψ ` R⇐ Q

∆;Ψ, x:A `M ⇐ B

∆;Ψ ` λx.M ⇐ Πx:A.B

Substitutions ∆;Ψ ` σ ⇐ Ψ ′

∆;Ψ ` · ⇐ ·
∆;Ψ ` σ ⇐ Φ ∆;Ψ ` R⇒ B B = [σ]ΦA

∆;Ψ ` σ;R⇐ Φ, x:A

∆;ψ, Ψ ` idψ ⇐ ψ

∆;Ψ ` σ ⇐ Φ ∆;Ψ `M ⇐ [σ]ΦA

∆;Ψ ` σ,M ⇐ Φ, x:A

Meta Terms ∆ ` C ⇐ U

∆ ` · ⇐ G

∆(ψ) = G

∆ ` ψ ⇐ G

∆ ` Ψ ⇐ G ∃
−−−−−→
(x : B′).B ∈ G ∆;Ψ ` σ ⇐

−−−−→
(x:B′) A = [σ]−−−−→

(x:B′)
B

∆ ` Ψ, x:A⇐ G

∆;Ψ ` R⇐ P

∆ ` Ψ̂ .R⇐ P [Ψ]

Ψ(x) = A

∆ ` Ψ̂ .x⇐ #A[Ψ]

∆(p) = #A[Φ] ∆;Ψ ` π ⇐ Φ [π]Φ(A) = B

∆ ` Ψ̂ .p[π]⇐ #B[Ψ]

Fig. 3. Typing for contextual LF and meta-objects

3.4 Meta-contexts and meta-substitutions

We adopt here the notion that meta-contexts are a set of meta-declarations,
since it simplifies the subsequent theoretical development of coverage (see also
[16, 1]. For the typing rules to be meaningful, the set cannot be cyclic.

Meta-Substitutions ∆ ` θ : ∆′

for all X:U ∈ ∆′ and C/X ∈ θ ∆ ` C ⇐ [[θ]]U
∆ ` θ : ∆′

The single meta-substitution, written as [[C/X]]U (∗) where ∗ stands for A, M,
R, σ, Ψ , is defined inductively on the structure of the given object. The typing
rules ensure that the type of the instantiation C and the type of X agree. We
note that we can always appropriately rename bound variables in C, if necessary.
We similarly write [[θ]](∗) for the simultaneous meta-substitution.

We only discuss briefly here some of the fundamental ideas. Let us first
consider the case where X stands for a meta-variable u and C is a meta-object
Ψ̂ .R. We note that there is no capture issues when we push [[Ψ̂ .R/u]] through a
lambda-expression and the only interesting issue arises when we encounter an
object u[σ]. In this case, we apply [[Ψ̂ .R/u]] to σ to obtain σ′. Subsequently, we
apply σ′ to R to obtain the final result.

Next, we consider the case where X stands for a parameter variable p and C
is a meta-object Ψ̂ .x or Ψ̂ .q[π]. The only interesting case is when we encounter
p[σ]. Similar to the case for meta-variables, we apply the meta-substitution to
σ to obtain σ′ and subsequently apply σ′ to x or q[π]. There is however a small
caveat: since σ′ is an arbitrary substitution, applying it to x, may yield a normal
object M . Hence, simply returning M may produce a non-normal term which
is not meaningful in our grammar. The solution to this problem is to define
meta-substitutions hereditarily (see [10]).

Finally, the case where X stands for a context variable ψ and C is a meta-
object Ψ . There are two interesting cases: 1) when we encounter the identity
substitution idψ, we unroll Ψ and create at the same time a concrete identity
substitution which maps all variables from Ψ to themselves. 2) when we en-
counter a context variable ψ in a context, then we simply replace it with the
concrete context Ψ . The full definition of meta-substitutions has been previously
been described in [7, 9].

4 Coverage Checking

A coverage goal is a meta-object C that can stand for a contextual object Ψ̂ .R
or a context Ψ . We write ∆ ` C : U for the coverage goal. Intuitively, a coverage
goal represents all of its closed instances which have type U .

A coverage problem consists of the coverage goal and a set of patterns. In
Beluga, this set of patterns comes from the program. We explicitly state the type
of each meta-variable, parameter variable and context variable; this information
is inferred during type reconstruction. In addition, we write meta-variables and
parameter variables as closures.

Previous work by Coquand [3] and Schürmann and Pfenning [18] describes
coverage checking for closed terms. While Schürmann [17, pp. 197–213] formu-
lated coverage for open terms within regular worlds, the foundation lacks a
general theoretical foundation for context variables and context matching. We
generalize the previous notion of coverage to directly support contextual objects,
parameter variables, explicit contexts and context matching.

Definition 1 (Immediate coverage). A coverage goal ∆ ` C : U is imme-
diately covered by a collection of patterns ∆i ` Ci : Ui if there exist i and a
meta-substitution θ such that ∆ ` θ : ∆i and [[θ]]Ci = C and [[θ]]Ui = U .

Definition 2 (Coverage). A coverage goal ∆ ` C : U is covered by a set of
patterns ∆i ` Ci : Ui if every ground instance · ` [[θ]]C : [[θ]]U , where · ` θ : ∆,
is immediately covered by some pattern ∆i ` Ci : Ui.

Definition 3 (Non-redundant complete set of meta-substitutions). Let
∆ ` C : U be a coverage goal. We say a finite collection ∆i ` ρi : ∆ is a non-
redundant set of meta-substitutions if for every · ` ρ : ∆ there exists a unique i
and a unique · ` θi : ∆i s.t. ρ = [[θi]]ρi.

The idea of coverage checking can then be described as follows: We begin by
generating a general coverage goal ∆ ` X : U and check whether the coverage
goals is immediately covered by a set of patterns. If it is not, we choose a vari-
able from ∆ (typically X : U in the first step) and compute a set of splitting
(refinement) substitutions ρi s.t. ∆i ` ρi : ∆. For each i, we check whether
∆i ` [[ρi]]X : [[ρi]]U is immediately covered. If it is not, we again choose a vari-
able X : U from ∆ and compute a set of splitting (refinement) substitutions
and proceed as previously. Unlike our previous formulation [4] coverage checking
becomes an iterative process and a natural extension of previous algorithms [18].

Theorem 1. Let ∆ ` C : U be a coverage goal and ∆i ` ρi : ∆ be a non-
redundant complete collection of meta-substitutions. All ∆i ` [[ρi]]C : [[ρi]]U are
covered by a given set of patterns if and only if ∆ ` C : U is covered.

Proof. Coverage depends only on ground instances - but the collection of ground
instances is exactly the same.

5 Splitting

At the heart of the coverage is the splitting operation. It defines how to refine
a meta-object X : U based on the meta-type U . It can not only be used as
part of a coverage algorithm to ensure that a given set of patterns covers, but
also to generate cases automatically in an interactive fashion. The three different
meta-types give rise to three different splitting operations.

5.1 Splitting a context variable

Given a context variable ψ : ctx where schema ctx = some [t:term_or_typ] obj t,
we generate two coverage goals:

[ψ : ctx, u : term or typ[ψ] ` [φ, x : obj u[idψ]] : ctx,
` [·] : ctx]

We generate the most general declaration from the given schema ctx. The
context can then be refined further by for example splitting on u.

Definition 4 (Splitting a context variable ψ : G). Let ∆ ` C : U be a
coverage goal and ∆ = ∆1, ψ : G,∆2. The set R of splitting substitutions is
generated as follows.

1. [[· /ψ]](∆1, ∆2) ` [[· /ψ]]id(∆) : ∆ is in R.

2. For each ∃
−−−→
(x:A).B ∈ G, let ρ = φ, x : [

−−−−−→
u[idφ]/x]B/ψ and

∆i = φ : G,
−−−−−→
u : A[φ], [[ρ]](∆1, ∆2). Then ∆i ` [[ρ]]id(∆) : ∆ is in R.

5.2 Splitting a meta-variable

Given a meta-variable u : P [Ψ], splitting needs to generate all possible meta-
objects which have type P in the context Ψ . Since P is atomic, we concentrate
on generating neutral objects. We first synthesize a set H of all possible heads
together with their type. Intuitively the set H contains all constants defined in
the signature and all variables occurring in Ψ . If Ψ contains a context variable
ψ of schema G, then we generate also parameter variables using the schema G.

Definition 5 (Generating a set of heads). Given meta-context ∆ and a local
context Ψ , we generate a set H as follows:

1. For each constant c : A in the signature, ∆;Ψ ` c : A is in H.

2. For each bound variable x : A in Ψ , ∆;Ψ ` x : A is in H.

3. If Ψ = ψ,
−−→
x:A and ψ : G ∈ ∆, then for each ∃

−−→
x:B′.B ∈ G,

∆,
−−−−→
u:B′[ψ],#p:([

−−−−−→
u[idψ]/x]B)[ψ] ; Ψ ` p[idψ] : [

−−−−−→
u[idψ]/x]B is in H.

Using a head h of type A from the set H, we then generate the most gen-
eral neutral term whose type is unifiable with P in the context Ψ . We describe
unification using the judgment ∆;Ψ ` Q + P / (∆′ , θ). If unification succeeds
then [[θ]]Q = [[θ]]P and ∆′ ` θ : ∆. The generation of a neutral term R′ is ac-
complished by the judgement ∆;Ψ ` neut (R) : A⇐ P / (∆′ , θ , R′) where
all the elements on the left side of / are inputs and the right side is the output.
The following holds: ∆′ ` θ : ∆ and ∆′; [[θ]]Ψ ` R′ ⇐ [[θ]]P .

∆,u:A[Ψ];Ψ ` neut (R u[π]) : [u[π]/x]B ⇐ P / (∆′ , θ , R′)
∆;Ψ ` neut (R) : Πx:A.B ⇐ P / (∆′ , θ , R′)

where π = id(Ψ)

∆;Ψ ` Q + P/(∆′, θ)
∆;Ψ ` neut (R) : Q⇐ P / (∆′ , θ , [[θ]]R)

Intuitively, we start generating a neutral term with h : A. As we recursively
analyze A, we generate all the arguments h is applied to until we reach an atomic
type Q. If Q unifies with the expected type P , then generating a most general
neutral term with head h succeeds.

Definition 6 (Splitting a meta-variable). . Let ∆ ` C : U be a coverage
goal and ∆ = ∆1, u : P [Ψ], ∆2. The set R of splitting substitutions is generated
as follows.

1. Given the meta-context ∆ and the local context Ψ , generate a set H using
Definition 5.

2. For each head ∆i;Ψ ` hi : Ai ∈ H ,
if ∆i;Ψ ` neut (h) : A⇐ P / (∆′ , θi , Ri) and ∆′ = ∆′1, u:[[θi]](P [Ψ]), ∆′2

then [[Ψ̂ .Ri/u]](∆′1, ∆
′
2) ` [[Ψ̂ ′.Ri/u]]θi : ∆

i
is a splitting substitution in R.

5.3 Splitting a parameter-variable

We show how to generate all variables of type #A[Ψ]. Intuitively, only bound
variables x : B from Ψ whose type is unifiable with A inhabit this type and if
the context Ψ contains a context variable ψ : G we also include all parameter
variables of the appropriate type synthesized from G. We only need to be careful
to generate an object which is size-decreasing such that coverage will eventually
terminate. We should only generate parameter variables of type [[θ]](B[ψ]) where
[[θ]]B = [[θ]]A, if Ψ contains in addition to ψ : G also other bound variable
declarations. This guarantees that the type of the new parameter variable is
smaller than the old one.

Definition 7 (Splitting a parameter-variable). . Let ∆ ` C : U be a cov-
erage goal and ∆ = ∆1,#p : A[Ψ], ∆2. The set R of splitting substitutions is
generated as follows.

Case: Ψ = ψ,
−−→
x:B where

−−→
x:B is non-empty and ψ : G ∈ ∆1

i For each ∃
−−−−→
(x:B′).B ∈ G. If ∆,

−−−−−→
u : B′[ψ] ` [

−−−−−→
u[idψ]/x]B + A / (∆′ , θ)

where ∆′ = ∆′1,#p:[[θ]](A[Ψ]), ∆′2 and ∆′ ` θ0 : ∆ s.t. θ0 ⊂ θ, then

[[ψ.q[idψ]/p]](∆′1, ∆
′
2),#q : [[θ0]](A[ψ]) ` [[ψ.q[idψ]/p]]θ0 : ∆ is

in the set R.

ii For each declaration x:B. If ∆;Ψ ` B + A / (∆′ , θ)
where ∆′ = ∆′1,#p:[[θ]](A[Ψ]), ∆′2 and ∆′ ` θ : ∆ then

[[Ψ̂ .x/p]](∆′1, ∆
′
2) ` [[Ψ̂ .x/p]]θ : ∆ is in the set R.

Case : Ψ =
−−→
x:B where

−−→
x:B is possibly empty For each declaration x:B.

If ∆;Ψ ` B + A / (∆′ , θ) where ∆′ = ∆′1,#p:([[θ]]A[Ψ]), ∆′2 and ∆′ ` θ : ∆

then [[Ψ̂ .x/p]](∆′1, ∆
′
2) ` [[Ψ̂ .x/p]]θ : ∆ is in the set R.

5.4 Theoretical properties of splitting

Theorem 2 (Splitting). The set of meta-substitutions generated by splitting
is non-redundant and complete.

Proof. From the properties of unification and our definition of contextual ob-
jects. The sets generated are also complete (see the appendix for the proof).

6 Implementation of coverage algorithm

The coverage algorithm proceeds as follows:

1. Check that a coverage goal ∆ ` C : U is immediately covered, i.e. there
exists an i and a meta-substitution ∆ ` θi : ∆i s.t. ∆ ` C = [[θi]]Ci : U and
U = [[θi]]Ui where ∆i ` Ci : Ui is a given pattern

2. If immediate coverage fails, pick a variable X : U from ∆ and split it.
Splitting returns a collection of splitting substitutions ∆k ` ρk : ∆ which
applied to C give us a a collection of new coverage goals ∆k ` [[ρk]]C : [[ρk]]U
all of which must be immediately covered.

Given that splitting generates a non-redundant most general set of refine-
ment substitutions, coverage is sound. Following Pfenning and Schürmann [18]
we record why coverage fails to generate counter examples. To accomplish this
we employ a pre-matching algorithm between C (the coverage goal) and Ci (the
pattern) which is inspired by Huet’s simplification phase in higher-order unifi-
cation algorithm and is similar to first-order matching. Our algorithm handles
matching of normal terms and contexts and produces two sets of equations. The
set E contains equations of the form C = Ψ̂ .u[σ], C = ψ or C = Ψ̂ .#p[π] where
u, ψ and #p are variables occurring in the pattern and C is the coverage goal.
The set S contains equations of the form Ψ̂ .u[σ] = C, ψ = or Ψ̂ .#p[σ] = C where
u, ψ, #p are variables occurring in the coverage goal and C is a sub-expression
of the given pattern. Splitting equations S arise from the failure of the pre-
matching algorithm but we can possibly make further progress by splitting on
u, ψ, or #p. The algorithm is a natural extension of [1].

For coverage to succeed, the set of splitting equations S must be empty and
all equations in E must be solved by higher-order unification. There are several
additional considerations:

Subordination When we generate a neutral term, we allow the meta-variable
to depend on the current context Ψ , but some declarations in Ψ may never be
relevant. Hence, we create the meta-variable in a strengthened context Ψ ′. To put
it differently, the current context Ψ can be obtained by weakening Ψ ′. Following
Virga [19, pp. 55–59], we compute a subordination relation—a dependency graph
of all the types in the signature. For example, if tm objects cannot appear in
terms of tp objects, then the declaration x:tm is irrelevant when analyzing a tp

object. Hence, when we create a meta-variable of type tp in a context g, x:tm,
we generate the meta-variable u of type [g.tp]. The same applies to parameter
variables.

Order of splitting During coverage, we need to choose a variable from ∆ to
split on. Unfortunately, the order in which we split arguments has an impact
beyond performance [18]. Some splits cannot be computed because their unifi-
cation problems lie outside the decidable pattern unification fragment. We first
split on context variables, if any context variable occurs in a splitting equation. If
there are none, we choose the meta-variable with the lowest de Bruijn index. Our
implementation follows in this regard the good practices implemented in Twelf’s
coverage checker, but there are subtle differences: for example, given multiple
arguments the coverage checker can split on, Twelf prefers arguments whose
type is non-recursive (such as the bool type above). Splitting on non-recursive
types seems “safe” because it always yields a finite number of subcases, and is
sometimes necessary.

Delphin splits on the argument that does not occur as part of an index of
another splittable argument and that yields the smallest number of subgoals.

Proving trivially impossible cases In Beluga, we decided to try and prove that
some generated counter-examples are impossible. After we are done checking for
coverage, we revisit the open coverage goals which were not so far covered, and
attempt to show that there is at least one variable for which no element exists,
i.e. its type is empty. Checking in general whether a type is empty is undecidable,
but we use a simple heuristic where we try to generate possible splits for a given
variable. If this fails, then we know that there is no inhabitant for it. The same
strategy is used in Twelf. For some examples, this strategy is very important
in practice. In proving soundness of a evaluation under continuations, proving
cases to be impossible, is vital for a compact specification. We prove 20-21 cases
to be impossible 6-times! We typically write out only two relevant cases, while
20 others are proven trivially impossible. Similarly in proving determinacy of a
small-step semantics containing arithmetic (TAPL Ch3), we can prove 8 cases
to be trivially impossible.

In our implementation, the user can write out these cases explicitly, but the
programmer does not have to. For convenience we support proving some cases
trivially.

7 Conclusion and Future Work

We have used the presented coverage algorithm on a wide range of examples:
from mechanizing proofs from [13] to proofs from the Twelf repository. Compared
to other systems such as Twelf and Delphin, our ability to describe contextual
objects and contexts explicitely requires fewer lemmas to work around some of
the limitations of coverage checkers found in other systems. This makes the de-
velopment of proofs more straightforward (for a deeper analysis see [12]). Most
recently, we have also extended Beluga with indexed data-types and incorpo-
rated the coverage algorithm for contextual objects into a more general coverage
algorithm for data-types. In the future, we plan to use the algorithm to gener-
ate case-splits interactively when the user desires and hence support interactive
program development

References

1. Abel, A., Pientka, B.: Higher-order dynamic pattern unification for dependent
types and records. In: Ong, L. (ed.) 10th International Conference on Typed
Lambda Calculi and Applications (TLCA’11). pp. 10–26. Lecture Notes in Com-
puter Science (LNCS 6690), Springer (2011)

2. Cave, A., Pientka, B.: Programming with binders and indexed data-types. In: 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’12). p. to appear. ACM Press (2012)

3. Coquand, T.: Pattern matching with dependent types. In: Informal Proceedings
of Workshop on Types for Proofs and Programs, pp. 71–84. Dept. of Computing
Science, Chalmers Univ. of Technology and Göteborg Univ. (1992)

4. Dunfield, J., Pientka, B.: Case analysis of higher-order data. In: International
Workshop on Logical Frameworks and Meta-Languages: Theory and Practice
(LFMTP’08). Electronic Notes in Theoretical Computer Science (ENTCS), vol.
228, pp. 69–84. Elsevier (Jun 2009)

5. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of
the ACM 40(1), 143–184 (January 1993)

6. McBride, C.: Dependently Typed Functional Programs and Their Proofs. Ph.D.
thesis, University of Edinburgh (2000), Technical Report ECS-LFCS-00-419

7. Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. ACM
Transactions on Computational Logic 9(3), 1–49 (2008)

8. Pfenning, F., Schürmann, C.: System description: Twelf — a meta-logical frame-
work for deductive systems. In: Ganzinger, H. (ed.) 16th International Conference
on Automated Deduction (CADE-16). Lecture Notes in Artificial Intelligence, vol.
1632, pp. 202–206. Springer (1999)

9. Pientka, B.: A type-theoretic foundation for programming with higher-order ab-
stract syntax and first-class substitutions. In: 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’08). pp.
371–382. ACM Press (2008)

10. Pientka, B., Dunfield, J.: Programming with proofs and explicit contexts. In: ACM
SIGPLAN Symposium on Principles and Practice of Declarative Programming
(PPDP’08). pp. 163–173. ACM Press (Jul 2008)

11. Pientka, B., Dunfield, J.: Beluga: a framework for programming and reasoning
with deductive systems (System Description). In: Giesl, J., Haehnle, R. (eds.) 5th
International Joint Conference on Automated Reasoning (IJCAR’10). pp. 15–21.
Lecture Notes in Artificial Intelligence (LNAI 6173), Springer-Verlag (2010)

12. Pientka, B., Dunfield, J.: Covering all bases: design and implementation of case
analysis for contextual objects. Tech. rep., McGill University (2010)

13. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)
14. Poswolsky, A., Schürmann, C.: System description: Delphin—a functional pro-

gramming language for deductive systems. In: International Workshop on Logical
Frameworks and Meta-Languages: Theory and Practice (LFMTP’08). Electronic
Notes in Theoretical Computer Science (ENTCS), vol. 228, pp. 135–141. Elsevier
(2009)

15. Poswolsky, A.B., Schürmann, C.: Practical programming with higher-order encod-
ings and dependent types. In: 17th European Symposium on Programming (ESOP
’08). vol. 4960, pp. 93–107. Springer (2008)

16. Reed, J.: Higher-order constraint simplification in dependent type theory. In: Felty,
A., Cheney, J. (eds.) International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice (LFMTP’09) (2009)

17. Schürmann, C.: Automating the Meta Theory of Deductive Systems. Ph.D. thesis,
Department of Computer Science, Carnegie Mellon University (2000), CMU-CS-
00-146

18. Schürmann, C., Pfenning, F.: A coverage checking algorithm for LF. In: Basin,
D., Wolff, B. (eds.) Proceedings of the 16th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs’03). pp. 120–135. Springer (2003)

19. Virga, R.: Higher-Order Rewriting with Dependent Types. Ph.D. thesis, Depart-
ment of Mathematical Sciences, Carnegie Mellon University (1999), CMU-CS-99-
167

Appendix

Theorem 3 (Splitting). The set of meta-substitutions generated by splitting
is non-redundant and complete.

Proof. From the properties of unification and our definition of contextual ob-
jects. The set generated from splitting a context variable is obviously non-
redundant. The set generated from splitting a meta-variable is non-redundant
since all generated neutral terms have distinct heads. The set generated from
splitting a parameter variable is non-redundant, since all declarations in a con-
text Ψ are distinct.

The sets generated are also complete (see the appendix for the proof). We
consider here the three cases of meta-objects.

Case Splitting on a meta-variable u:P [Ψ] ∈ ∆. We need to show that all closed
canonical objects C of type P [Ψ] are covered by the generated splits. Since
C is normal, we know C = Ψ̂ .R and R = h M1 . . .Mn s.t. · ` θ : ∆ and
·; [[θ]]Ψ ` R ⇐ [[θ]]P . The set H is complete and for all heads h we have
h:A ∈ H. Moreover, by the properties of unification, ∆;Ψ ` neut (h) :
A ⇐ P / (∆′ , θ′ , R′) generates the most general R′ s.t. ∆′; [[θ′]]Ψ `
R′ ⇐ [[θ′]]P . Therefore there exists a meta-substitution ρ s.t. · ` ρ : ∆′ and
[[ρ]]([[θ′]](P [Ψ) = [[θ]](P [Ψ]) and [[ρ]]R′ = R.

Case Splitting on a context variable ψ:G ∈ ∆. We need to show that all closed
canonical objects C of type G are covered by the generated splits. Since C
is normal, it stands for a concrete context which is either empty or Ψ =
x1:B1, . . . , xn:Bn s.t. · ` Ψ : G. Our splitting definition generates the most
general declarations which are instances of the schemaG, i.e. for all ∃

−−→
x:A.B ∈

G, we generate Ψ ′ = ψ, x : [
−−−−−→
u[idψ]/x]B s.t.ψ : G,

−−−−→
u:A[ψ] ` Ψ ′ : G. Since it is

most general, there exists a meta-substitution ρ s.t. · ` ρ : ψ:G,
−−−−→
u:A[ψ] s.t.

[[ρ]]Ψ ′ = Ψ .
Case Splitting on a parameter variable #p : A[Ψ]. We need to show that all

closed canonical objects C of type #[[θ]](A[Ψ]) where · ` θ : ∆ are covered
by the generated splits. Since C is canonical, it must be of the form C =
x1, . . . , xn.xi where 1 ≤ i ≤ n and ·; [[θ]]Ψ ` xi ⇒ A′ s.t. [[θ]]Ai = A′.
We distinguish two cases. If Ψ = x1:A1, . . . xn:An, then xi has type Ai and
our splitting algorithm guarantees that there exists a most general meta-
substitution ∆′ ` θ′ : ∆ s.t. [[θ′]]Ai = [[θ′]]A. Since θ′ is most general, there
exists a grounding meta-substitution ρ s.t. · ` ρ : ∆′ and [[ρ]]([[θ′]]Ai) = A′ =
[[θ]]A.
If Ψ = ψ, xi:Ai, . . . , xn:An, we also need to consider the case where our al-
gorithm generates for all ∃

−−→
x:A.B ∈ G, ψ : G,

−−−−→
u:A[ψ],#p : B[ψ] ` ψ.p[idψ]⇒

B, if B unifies with A. As a consequence there is a most general meta-
substitution ∆′ ` θ : ∆,ψ : G,

−−−−→
u:A[ψ],#p : B[ψ]. To generate closed in-

stances of the form x1, . . . xn.xk where 1 ≤ k < i, we instantiate ψ with
x1:A1, . . . xk:Ak and p with x1, . . . xi−1.xk.

