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Abstract

This paper explores a new point in the design space of func-
tional programming: functional programming with dependently-
typed higher-order data structures described in the logical frame-
work LF. This allows us to program with proofs as higher-order
data. We present a decidable bidirectional type system that dis-
tinguishes between dependently-typed data and computations. To
support reasoning about open data, our foundation makes contexts
explicit. This provides us with a concise characterization of open
data, which is crucial to elegantly describe proofs. In addition, we
present an operational semantics for this language based on higher-
order pattern matching for dependently typed objects. Based on
this development, we prove progress and preservation.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Theory, Languages

Keywords Type theory, Dependent types, Logical frameworks

1. Introduction

Various forms of dependent types have found their way into
mainstream functional programming languages to allow pro-
grammers to express stronger properties about their programs
[2, 16, 26, 29]. In this paper, we explore a new point in the design
space of functional programming with dependent types where
we can analyze and manipulate dependently-typed higher-order
data described in the logical framework LF [9]. LF provides a
rich meta-language for describing formal systems defined by
axioms and inference rules (such as a type system, a logic,
etc.) together with proofs within these systems (such as a typ-
ing derivation, a proof of a proposition, etc.). Its strength and
elegance comes from supporting encodings based on higher-
order abstract syntax (HOAS), in which binders in the object
language are represented as binders in the meta-language. For
example, the formula ∀x.(x = 1) ⊃ ¬(x = 0) is represented as
forall λx. (eq x (Suc Zero)) imp (not (eq x Zero)).
This simple, but powerful idea avoids the need to implement com-
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mon and tricky machinery for variables, such as capture-avoiding
substitution and renaming.

However, implementing and verifying proofs about HOAS en-
codings has been notoriously difficult. There are two distinct chal-
lenges. First, encodings based on HOAS require us to recursively
traverse binders and describe open data objects within a context.
Second, dependent types add another degree of complexity: data
objects themselves can refer to types and the structure of types can
be observed.

Programming with HOAS has recently received widespread at-
tention, although most work has focused on the simply-typed set-
ting [5, 10, 21, 25]. Only a few approaches have been considered
in the dependently-typed setting. Despeyroux and Leleu [3, 4] ex-
tended previous work by Despeyroux et al. [5] which provided
a type-theoretic foundation for primitive recursive programming
with HOAS. The Delphin language [23] extends these ideas to pro-
vide general recursion over HOAS encodings as well as dependent
types.

In this paper, we present an alternative to these approaches,
extending the first author’s previous work on programming with
HOAS encodings in the simply-typed setting [21] to dependent
types. As in that work, we use contextual modal types [15] to
separate HOAS data from computations about them. Open data
M is characterized by the contextual modal type A[Ψ] where M
has type A in the context Ψ. The object M is closed with respect
to the context Ψ, so M can refer to variables declared in Ψ. For
example, the object eq x (Suc Zero) has type o[x:nat] (where
o describes propositions). Since we want to allow recursion over
open data and the local context Ψ associated with the type A may
grow, our foundation supports context variables, which allow us
to abstract over contexts. Just as types classify terms, and kinds
classify types, we use context schemas to classify and characterize
contexts.

In this paper, we revisit the key concepts from the simply-typed
setting [21] and generalize them to dependent types. While extend-
ing the data language with dependent types follows from previ-
ous work [15], the generalization of context schemas to dependent
types and, especially, the integration of dependently typed higher-
order data into the computation language are novel. Our discus-
sion will highlight the fact that the simply-typed foundation scales
nicely to the setting of dependent types. This lays the foundation for
programming with proofs and explicit contexts. Inductive proofs
about formal systems can be implemented as recursive functions,
and case analysis in the inductive proof corresponds to analyzing
dependently-typed higher-order data via pattern matching. We call
this language Beluga.

We make the following contributions. First, we present a syntax-
directed decidable type system for dependently-typed open data.



Our presentation only admits data objects in canonical form be-
cause only those represent meaningful data. This follows the ideas
of Watkins et al.[28] and Nanevski et al.[15]. By cleanly separat-
ing the data language from the computation language, exotic terms
that do not represent legal data objects are prevented. Our frame-
work supports explicit context variables to abstract over the con-
crete context and parameterizes computations by contexts, classi-
fied by context schemas. While context schemas have been present
in the simply-typed setting, characterizing contexts in the presence
of dependent types is more complex.

Second, we present a type system for computation that allows
recursion and pattern matching on dependently-typed open data.
This type system is also syntax-directed and decidable. It allows
dependent types, but only types indexed by data objects, not arbi-
trary, possibly recursive computations. Because data objects are in
canonical form, equality between two data objects is easily decided
by syntactic equality. This is crucial to achieve a decidable type sys-
tem. The language we describe is intended as an internal language,
into which a source level language will be compiled. It clearly dis-
tinguishes between implicit data objects that occur in a dependent
type and may be kept implicit in the actual source program, and
explicit data objects that are recursively analyzed with higher-order
pattern matching [13, 17] and are explicit in the source program.
Intuitively, implicit data arguments are the index objects that are
reconstructed when translating a source language to this internal
language. In addition, our type system is unique in that constraints
due to dependent types are resolved eagerly during type checking
using higher-order pattern unification, leading to an elegant decid-
able algorithm.

Finally, we present a small-step operational semantics based
on higher-order pattern matching for dependently-typed objects
[17, 22], and prove progress and preservation for our language with
respect to this semantics.

This paper is a first important step in laying the type-theoretic
foundation for programming with proofs and explicit contexts.
Our foundation ensures that contexts are well-formed according
to a user-specified schema, and we have formulated a coverage
checking algorithm [6] for dependently-typed open data. At this
point, the only missing piece is to verify that a given function
terminates—we leave this for a separate paper. As such, our work
may be thought of as an alternative to Twelf [19], an implementa-
tion of the logical framework LF [9] in which proofs about formal
systems are encoded via relations, and to Delphin [23] (which, like
our system, implements proofs via functions).

2. Motivation

To motivate the problem, we consider a program that counts the
free occurrences of some variable x in a formula. For example,
the formula ∀y.(x = y) ⊃ (suc y = suc x) has two free
occurrences of x. The data language here is first-order logic with
quantification over natural numbers. We begin by defining a type o
for propositions and we use higher-order abstract syntax to model
the binder in the universal quantifier.

nat : type .

Zero: nat.
Suc : nat → nat.

o : type .
eq : nat → nat → o.
imp : o → o → o.
forall: (nat → o) → o.

2.1 Counting free variable occurrences

We will approach this problem top-down and first consider the
function cntV which will recursively analyze formulas using pat-
tern matching. When it reaches the proposition eq, it will call a sec-
ond function cntVN. The modal type o[x:nat, y:nat] describes

a formula that can refer to the variables x and y. One element of this
type is the formula ((eq x y) imp (eq (Suc x) (Suc y))).

When analyzing a formula with a universal quantifier, the set of
free variables grows. Hence, we need to abstract over the contexts
in which the formula makes sense. Context variables ψ provide
this functionality. The function cntV takes a context ψ of natural
numbers, a formula f, and returns an integer. Just as types classify
data objects and kinds classify types, we introduce schemas to
classify contexts. In the type declaration for the function cntV we
say that the context variable ψ has the schema (nat)∗, meaning
that ψ stands for a data-level context x1:nat,. . .,xn:nat.

ctx schema natCtx = (nat)∗

rec cntV : Π ψ:natCtx.o[ψ,x:nat] → nat[.] =
Λ ψ ⇒ fn f ⇒ case f of

box(ψ,x. imp U[idψ,x] W[idψ,x]) ⇒
add (cntV ⌈ψ⌉ box(ψ,x. U[idψ,x]))

(cntV ⌈ψ⌉ box(ψ,x. W[idψ,x]))
| box(ψ,x. forall(λy.U[idψ,x,y])) ⇒

cntV⌈ψ,y:nat⌉ box(ψ,y,x. U[idψ,x,y])
| box(ψ,x. eq U[idψ,x] V[idψ, x]) ⇒

add (cntVN ⌈ψ⌉ box(ψ,x.U[idψ,x]))
(cntVN ⌈ψ⌉ box(ψ,x.V[idψ,x]))

The function cntV is built by a context abstraction Λ ψ that
introduces the context variable ψ and binds every occurrence of
ψ in the body. Next, we introduce the computation-level variable
f which has type o[ψ,x:nat]. In the body of the function cntV
we case-analyze objects of type o[ψ,x:nat]. The box construct
separates data from computations.

When we encounter an object built from a constructor eq, imp,
or forall, we need to access the subexpression(s) underneath. Pat-
tern variables are characterized by a closure U[σ] consisting of a
contextual variable U and a postponed substitution σ. As soon as
we know what the contextual variable stands for, we apply the sub-
stitution σ. In the example, the postponed substitution associated
with U is the identity substitution which essentially corresponds to
α-renaming. We write idψ for the identity substitution with do-
main ψ. Intuitively, one may think of the substitution associated
with contextual variables occurring in patterns as a list of variables
which may occur in the hole. In the data object U[idψ], for exam-
ple, the contextual variable U can be instantiated with any formula
that is either closed (i.e. it does not refer to any bound variable
listed in the context ψ) or contains a bound variable from the con-
text ψ. Since we want to allow subformulas to refer to all variables
in (ψ, x:nat), we write U[idψ, x]. We use capital letters for
meta-variables.

In the first case for imp we recursively analyze the subformulas
described by U[idψ,x] and W[idψ,x]. The context ψ is the same,
so we pass it (explicitly) in the recursive calls.

In the case for box(ψ,x. forall (λy.W[idψ,x,y])), we
analyze the formula W[idψ,x,y] under the assumption that y
is a natural number. To do this, we pass an extended context
(ψ,y:nat) to cntV.

Finally, for eq, we call cntVN to count the occurrences of x in
the natural numbers U[idψ,x] and V[idψ, x], explicitly passing
the context ψ. The function cntVN counts the occurrences of a
variable x in an object of type nat[ψ,x:nat].

rec cntVN : Π ψ:natCtx.nat[ψ,x:nat] → nat[.] =
Λ ψ ⇒ fn n ⇒ case n of

box(ψ,x. x) ⇒ box( . Suc Z)
| box(ψ,x. p[idψ]) ⇒ box( . Z)
| box(ψ,x. Zero) ⇒ box( . Z)
| box(ψ,x. Suc U[idψ,x]) ⇒

cntVN ⌈ψ⌉ box(ψ,x. U[idψ,x])



The first and second cases are the interesting ones. The first
patttern, box(ψ,x. x), matches an occurrence of x. The second
pattern, box(ψ,x. p[idψ]), matches a variable that is not x and
occurs in ψ. For this case, we use a parameter variable p (the
small letter distinguishes it from a meta-variable). This represents
a bound data-level variable. The substitution idψ associated with
p characterizes the possible instantiations of p. This allows us to
write a generic base case where we encounter a parameter from
the context that ψ stands for. This combination of explicit context
variables and parameter variables to describe generic base cases is
unique to our work. Comparison and explicit pattern matching for
variables are features typically associated with nominal systems [7,
27]. However, unlike nominal systems, variable names here are not
global, but local and subject to α-renaming.

In Twelf [19], one can write a relation that counts variable
occurrences, but there is no generic base case for counting variables
in a natural number. Instead, one dynamically adds the appropriate
base case for every variable introduced when traversing a universal
quantifier.

2.2 Example: Programming with proofs

We illustrate the idea of programming with proofs by considering
bracket abstraction, a key lemma that arises in the translation of
natural deduction proofs to Hilbert-style proofs. For this discussion
we concentrate on the fragment consisting of implications. This
example has been extensively discussed in the literature [18, 23]
and so highlights the differences between approaches. This exam-
ple again uses explicit context variables and parameter variables.
The Hilbert-style axiomatization can be formalized as follows:

hil : o → type .

k : hil (A imp (B imp A)).
s : hil ((A imp (B imp C)) imp

((A imp B) imp (A imp C))).
mp : hil (A imp B) → hil A → hil B.

We omit leading Πs from the types when they can be recon-
structed, as is common practice in Twelf [19].

The bracket abstraction lemma states that a derivation D of
hil B that depends on the hypothesis x:hil A can be translated
into a derivation E of hil (A imp B) that does not refer to the
hypothesis x:

LEMMA (BRACKET ABSTRACTION)
If D :: Γ, x:hil A ⊢ hil B then E : Γ ⊢ hil (A imp B)

The context Γ has the form xn:hil An, . . . , x1:hil A1, and
the proof follows by induction on the derivation D. There are
four base cases. Two arise from the constants k and s, but we
concentrate on the other two cases, which arise from using an
assumption in Γ, x:hil A: we could have used the assumption
x:hil A, or an assumption xi:Ai from Γ, to prove hil B.

Explicit contexts allow us to easily characterize the lemma as a
dependent type, and implement the inductive proof as a recursive
program using pattern matching. Moreover, every case in the infor-
mal proof directly corresponds to a case in our recursive program.
As a first step, we characterize the context Γ with a context schema:

ctx schema hilCtx = (all A:o. hil A)∗.

This schema describes contexts xn:hil An, . . . , x1:hil A1. Next,
we represent the lemma as a dependent type. The recursive function
that realizes this type describes the proof transformation on Hilbert
derivations. Implicit data objects that characterize index objects
occurring in a dependent type are introduced with Π2, but we omit
these implicit type arguments from computations and from data for
readability, since we expect them to be reconstructed in practice.

rec ded: Π γ:hilCtx.Π2A:o[γ] Π2B:o[γ].
(hil B[idγ])[γ, x:hil A[idγ]]

→ (hil (A[idγ] imp B[idγ]))[γ] =
Λ γ ⇒ fn D ⇒
case D of

box(γ, x. k) ⇒ box(γ. mp k k)
| box(γ, x. s) ⇒ box(γ. mp k s)
| box(γ, x. x) ⇒ box(γ. mp (mp s k) k)
| box(γ, x. p[idγ]) ⇒ box(γ. mp k p[idγ])
| box(γ, x. mp D1[idγ, x] D2[idγ, x]) ⇒

let

box(γ. E1[idγ]) = ded ⌈γ⌉ box(γ,x. D1[idγ,x])

box(γ. E2[idγ]) = ded ⌈γ⌉ box(γ,x. D2[idγ,x])
in

box(γ. mp (mp s E1[idγ]) E2[idγ])
end

We analyze Hilbert-style derivations by pattern matching on
D, which describes an object of type hil B[idγ] in the context
(γ, x:hil A[idγ]). Intuitively, we can construct all derivations
of the appropriate type by either using one of the constructors or
an element from the context. This gives rise to the first two cases:
either we have used the specific assumption x, or we have used one
of the assumptions in γ. To describe this last generic variable case,
we again use a parameter variable.

The other base cases are straightforward, so we concentrate on
the last case where we use modus ponens. To pattern match on
derivations constructed using the constant mp, we describe the sub-
derivations using meta-variables D1[idγ] and D2[idγ] for which
higher-order pattern matching will find appropriate instantiations
during runtime. The appeal to the induction hypothesis corresponds
to the recursive call to the function ded. We first pass to this func-
tion the context γ by context application, and then the derivation
described by box(γ,x. D1[idγ, x]).

2.3 Summary of key ideas

We summarize here the five key ideas underlying our work: First,
we separate data from computations via the modality box. Second,
every data object is closed with respect to a local context. For ex-
ample, box(x. eq x z) denotes an object of type o[x:nat], i.e.
a proposition that may contain the variable x. The box-construct in-
troduces the bound variables x. Third, we allow context variables ψ
and abstract over them on the computation level. This is necessary
since the concrete bound variables occurring in a data object are
only exposed when we recursively traverse a binder, and the context
describing these variables may grow. More importantly, this allows
us to program with explicit contexts and capture more invariants.
Fourth, we support pattern matching on higher-order data using
meta-variables and, importantly, parameter variables. While meta-
variables allow us to deconstruct arbitrary objects with binders, pa-
rameter variables allow us to manipulate names of bound variables
directly in computation. Finally, we support dependent types us-
ing the type Π2u::A[Ψ].τ , and we clearly distinguish implicit data
objects occurring as index objects in data-level types from explicit
data objects that can be analyzed by pattern matching.

3. Data-level terms and contexts

We begin by describing the data layer of our dependently-typed
intermediate language. We support the full logical framework LF
together with Σ-types. Our data layer closely follows contextual
modal type theory [15], extended with parameter variables and con-
text variables [21], and finally with dependent pairs and projections.
The syntax is given in Figure 1. We only characterize normal terms
since only these are meaningful in the logical framework, following
Watkins et al. [28] and Nanevski et al. [15]. This is achieved by dis-
tinguishing between normal terms M and neutral terms R. While



Kinds K ::= type | Πx:A.K

Atomic types P ::= a M1 . . .Mn

Types A,B ::= P | Πx:A.B | Σx:A.B

Normal terms M,N ::= λx.M | (M,N) | R

Neutral terms R ::= c | x | u[σ] | p[σ] | R N | projkR

Substitutions σ, ρ ::= · | σ ; M | σ , R | idψ

Figure 1. Data-level syntax

the syntax only guarantees that terms N contain no β-redexes, the
typing rules will also guarantee that all well-typed terms are fully
η-expanded.

We distinguish between four kinds of variables in our theory:
Ordinary bound variables are used to represent data-level binders
and are bound by λ-abstraction. Contextual variables stand for
open objects, and include meta-variables u that represent general
open objects and parameter variables p that can only be instanti-
ated with an ordinary bound variable.1 Contextual variables are in-
troduced in computation-level case expressions, and can be instan-
tiated via pattern matching. They are associated with a postponed
substitution σ thereby representing a closure. This substitution pre-
cisely characterizes the dependencies we allow when instantiating
the meta-variable with an open term. Our intention is to apply σ as
soon as we know which term the contextual variable should stand
for. The domain of σ thus describes the free variables of the object
the contextual variable stands for, and the type system statically
guarantees this.

Substitutions σ are built of either normal terms (in σ ; M ) or
atomic terms (in σ , R). The two forms are necessary since not
every neutral term is also a normal term. Only neutral terms of
atomic type are in fact normal. We do not make the domain of the
substitutions explicit, which simplifies the theoretical development
and avoids having to rename the domain of a given substitution
σ. We also require a first-class notion of identity substitution idψ .
Data-level substitutions, as defined operations on data-level terms,
are written [σ]N .

While contextual variables are declared in a meta-level context
∆, ordinary bound variables are declared in a data-level context
Ψ. Our foundation supports context variables ψ which allow us to
reason abstractly with contexts. Context variables are declared in
Ω. Unlike previous uses of context variables [12], a context may
contain at most one context variable. In the same way that types
classify objects, and kinds classify types, we introduce the notion
of a schema W that classifies contexts Ψ.

Context variables ψ, φ
Contexts Ψ,Φ ::= · | ψ | Ψ, x:A
Meta-contexts ∆ ::= · | ∆, u::A[Ψ] | ∆, p::A[Ψ]
Schema contexts Ω ::= · | Ω, ψ::W

Element types eA ::= Πx:A. eA | a N1 . . . Nn
Schema elements F ::= allx1:fB1, . . . , xn: fBn.

Σy1:fA1, . . . , yk:fAk. eA
Schemas W ::= (F1 + · · · + Fn)

∗

As the earlier example illustrated, contexts play an important
part in programming with open data objects, and contexts, which
are explicitly constructed at the computation level, belong to a
specific context schema. For example, the schema (nat)∗ rep-
resented contexts of the form x1:nat, . . ., xn:nat, and the

1 Prior work also considered substitution variables. Although our theory ex-
tends to substitution variables, we omit them here to make the presentation
compact and focus on aspects related to dependent types.

schema all A:o.hil A characterized the context Γ consisting of as-
sumptions x:hil A. In general, we allow an even richer form of
contexts to be captured. Consider how the schema of the context
Γ will change when we extend the Hilbert-style calculus with uni-
versal quantifiers. In this case, we must also consider assumptions
about possible parameters introduced when we traverse a universal
quantifier. On paper, we may write the following to characterize
this context:

Hilbert Contexts Γ ::= · | Γ, a:nat | Γ, x:hil A

We provide + to denote a choice of possible elements in a con-
text. Hence we would modify our schema for Hilbert contexts as
follows:

ctx schema hilCtx = nat + all A:o. hil A.

Context schemas are built of elements F1, . . . Fn, each of which

must have the form all eΦ.ΣeΨ. eA where eΦ and eΨ are Σ-free con-
texts, i.e. x1:fB1, . . . xk:fBk. In other words, the element is of ΣΠ-
type, where we first introduce some Σ-types, followed by pure Π-
types. We disallow arbitrary mixing of Σ and Π. This restriction
makes it easier to describe the possible terms of this type, which is
a crucial step towards ensuring coverage [6].

Schemas resemble Schürmann’s worlds [24], but while similar
in spirit, we use dependent pairs to express the relationship between
multiple objects in a context. While worlds impose a similar ΣΠ-
structure, schemas differ from worlds in the sense that schemas are
pure. They only keep track of assumptions about binders occurring
in a data object of typeA. This is unlike worlds as realized in Twelf
[19], which also track dynamic computation-level extensions.

3.1 Data-level typing

In this section, we present a bidirectional type system for data-
level terms. We assume that type constants and object constants are
declared in a signature Σ, which we suppress since it is the same
throughout a typing derivation. However, we will keep in mind
that all typing judgments have access to a well-formed signature.
Typing is defined via the following judgments:

Ω; ∆;Ψ ⊢M ⇐ A Check normal object M against A
Ω; ∆;Ψ ⊢ R⇒ A Synthesize A for neutral object R
Ω; ∆;Φ ⊢ σ ⇐ Ψ Check σ against context Ψ

For readability, we omit Ω in the subsequent development since it
is constant; we also assume that ∆ and Ψ are well-formed. First,
we show in Figure 2 the typing rules for objects.

We assume that data level type constants a together with con-
stants c have been declared in a signature. We will tacitly rename
bound variables, and maintain that contexts and substitutions de-
clare no variable more than once. Note that substitutions σ are de-
fined only on ordinary variables x, not on modal variables u. We
also require the usual conditions on bound variables. For exam-
ple, in the rule ΠI the bound variable x must be new and cannot
already occur in the context Ψ. This can always be achieved via
α-renaming. The typing rules for data-level neutral terms rely on
hereditary substitutions that preserve canonical forms [15, 28].

The idea is to define a primitive recursive functional that always
returns a canonical object. In places where the ordinary substitution
would construct a redex (λy.M)N we must continue, substituting
N for y in M . Since this could again create a redex, we must
continue and hereditarily substitute and eliminate potential redexes.
Hereditary substitution can be defined recursively, considering both
the structure of the term to which the substitution is applied and
the type of the object being substituted. Hence we annotate the
substitution with the type of the argument being substituted. We
also indicate with the superscript a that the substitution is applied
to a type. We give the definition of hereditary substitutions in the
appendix.



Data-level normal terms

∆; Ψ, x:A ⊢ M ⇐ B

∆;Ψ ⊢ λx.M ⇐ Πx:A.B
ΠI

∆; Ψ ⊢M1 ⇐ A1 ∆; Ψ ⊢M2 ⇐ [M1/x]
a
A1
A2

∆;Ψ ⊢ (M1,M2) ⇐ Σx:A1.A2

ΣI

∆;Ψ ⊢ R⇒ P ′ P ′ = P

∆;Ψ ⊢ R⇐ P
turn

Data-level neutral terms

x:A ∈ Ψ
∆;Ψ ⊢ x⇒ A

var c:A ∈ Σ
∆; Ψ ⊢ c⇒ A

con

u::A[Φ] ∈ ∆ ∆;Ψ ⊢ σ ⇐ Φ

∆;Ψ ⊢ u[σ] ⇒ [σ]aΦA
mvar

p::A[Φ] ∈ ∆ ∆;Ψ ⊢ σ ⇐ Φ

∆;Ψ ⊢ p[σ] ⇒ [σ]aΦA
param

∆;Ψ ⊢ R⇒ Πx:A.B ∆;Ψ ⊢ N ⇐ A

∆;Ψ ⊢ R N ⇒ [N/x]aAB
ΠE

∆;Ψ ⊢ R⇒ Σx:A1.A2

∆;Ψ ⊢ proj1R⇒ A1

ΣE1

∆;Ψ ⊢ R⇒ Σx:A1.A2

∆;Ψ ⊢ proj2R⇒ [proj1R/x]
a
A1
A2

ΣE2

Data-level substitutions

∆;Ψ ⊢ · ⇐ · ∆;ψ,Ψ ⊢ idψ ⇐ ψ

∆;Ψ ⊢ σ ⇐ Φ ∆;Ψ ⊢ R⇒ A′ [σ]aΦA = A′

∆;Ψ ⊢ (σ , R) ⇐ (Φ, x:A)

∆;Ψ ⊢ σ ⇐ Φ ∆;Ψ ⊢M ⇐ [σ]aΦA

∆;Ψ ⊢ (σ ; M) ⇐ (Φ, x:A)

Figure 2. Data-level typing for normal terms, neutral terms, and
substitutions

Finally, we define context checking.

Context Ψ checks against a schema W : Ω ⊢ Ψ ⇐W

for some k
Ω;∆;Ψ ⊢ B ∈ Fk Ω;∆ ⊢ Ψ ⇐ (F1 + · · · + Fn)

∗

Ω;∆ ⊢ Ψ, x:B ⇐ (F1 + · · · + Fn)
∗

ψ::W ∈ Ω

Ω; ∆ ⊢ ψ ⇐W Ω;∆ ⊢ · ⇐W

To verify that a context Ψ belongs to a schema W = (F1 + · · · +
Fn)∗, we check that for every declaration Bi in the context Ψ,
there exists a k s.t. Bi is an instance of a schema element Fk =
all eΦ.Σy1: eA1, . . . , yj : eAj . eA. This means we must find an instanti-

ation σ for all the variables in eΦ s.t. [σ]aeΦ(Σy1: eA1, . . . , yj : eAj . eA) is
equal toBi. This is done in practice by higher-order pattern match-
ing.

Theorem 1 (Decidability of Typechecking).
All judgments in the contextual modal type theory are decidable.

Proof. The typing judgments are syntax-directed and therefore
clearly decidable assuming hereditary substitution is decidable.

3.2 Substitution operations

The different variables (ordinary variables x, context variables ψ,
and contextual variables u[σ] and p[σ]) give rise to different sub-
stitution operations. We already remarked on the hereditary substi-
tution operation for ordinary variables x and we give its definition
in the appendix. The remaining substitution operations do not re-
quire any significant changes from earlier work [15, 21] to handle
dependent types and we revisit them in this section.

3.2.1 Substitution for context variables

If we encounter a context variable ψ, we simply replace it with the
context Ψ. This is possible because context variables occur only in
leftmost position. When we substitute some context Ψ for ψ in the
context (ψ,Φ), the context Ψ cannot depend on Φ. This would not
hold if we allowed contexts of the form (Φ, ψ).

Data-level context

[[Ψ/ψ]](·) = ·
[[Ψ/ψ]](Φ, x:A) = (Φ′, x:A′) if x /∈ V(Φ′) and [[Ψ/ψ]]A = A′

and [[Ψ/ψ]]Φ = Φ′

[[Ψ/ψ]](ψ) = Ψ
[[Ψ/ψ]](φ) = φ if φ 6= ψ

When we apply the substitution [[Ψ/ψ]] to the context Φ, x:A, we
apply the substitution to the type A, yielding some new type A′,
and to the context Φ, yielding some new context Φ′. Applying
the substitution to the type A is necessary in the dependently-
typed setting, since A may contain terms and in particular identity
substitutions idψ . When we replace ψ with Ψ in the substitution
idψ , we unfold the identity substitution. Expansion of the identity
substitution is defined by the operation id(Ψ) for valid contexts Ψ:

id(·) = ·
id(Ψ, x:A) = id(Ψ) , x
id(ψ) = idψ

Lemma 1 (Unfolding identity substitution).
If id(Ψ) = σ then ∆;Ψ,Ψ′ ⊢ σ ⇐ Ψ.

Proof. By induction on the structure of Ψ.

When we combine Φ′ and the declaration x:A′ to yield a new
context, we must ensure that x is not already declared in Φ′. This
can always be achieved by appropriately renaming bound variable
occurrences. We write V(Φ′) for the set of variables declared in Φ′.
The rest of the definition is mostly straightforward.

Theorem 2 (Substitution for context variables).
If Ω, ψ::W,Ω′;∆;Φ ⊢ J and Ω ⊢ Ψ ⇐W
then Ω,Ω′; [[Ψ/ψ]]∆; [[Ψ/ψ]](Φ) ⊢ [[Ψ/ψ]]J .

Proof. By induction on the first derivation using Lemma 1.

3.2.2 Contextual substitution for contextual variables

Substitution for contextual variables is a little more difficult, but
is essentially similar to Pientka [21]. We can think of u[σ] as a
closure where, as soon as we know which term u should stand
for, we can apply σ to it. The typing will ensure that the type of
M and the type of u agree, i.e. we can replace u of type A[Ψ]
with a normal term M if M has type A in the context Ψ. Be-
cause of α-conversion, the variables substituted at different occur-
rences of u may differ, and we write the contextual substitution as

[[Ψ̂.M/u]](N), [[Ψ̂.M/u]](R), and [[Ψ̂.M/u]](σ), where Ψ̂ binds



all free variables inM . Applying [[Ψ̂.M/u]] to the closure u[σ] first

obtains the simultaneous substitution σ′ = [[Ψ̂.M/u]]σ, but instead
of returning M [σ′], it eagerly applies σ′ to M . Similar ideas ap-

ply to parameter substitutions, which are written as [[Ψ̂.x/p]](M),

[[Ψ̂.x/p]](R), and [[Ψ̂.x/p]](σ). Parameter substitution could not be
achieved with the previous definition of contextual substitution for
meta-variables, since it only allows us to substitute a normal term
for a meta-variable, and x is only normal if it is of atomic type. We
give its definition in the appendix.

Finally, we will rely in the subsequent development on simul-
taneous contextual substitutions, built of either meta-variables,
(θ, Ψ̂.M/u), or parameter variables, (θ, Ψ̂.x/p). The judgment
∆ ⊢ θ ⇐ ∆′ checks that the contextual substitution θ maps con-
textual variables from ∆′ to the contextual variables in ∆.

Simultaneous contextual substitution

∆ ⊢ · ⇐ ·

∆ ⊢ θ ⇐ ∆′ ∆; [[θ]]Ψ ⊢ M ⇐ [[θ]]A

∆ ⊢ (θ, Ψ̂.M/u) ⇐ ∆′, u::A[Ψ]

∆ ⊢ θ ⇐ ∆′ ∆; [[θ]]Ψ ⊢ x⇒ A′ A′ = [[θ]]A

∆ ⊢ (θ, Ψ̂.x/p) ⇐ ∆′, p::A[Ψ]

4. Computation-level expressions

We cleanly separate the data level from the computation level (Fig-
ure 3), which describes programs operating on data. Computations
analyze data of type A[Ψ], which denotes an object of type A that
may contain the variables specified in Ψ. To allow quantification
over context variables ψ, we introduce the type Πψ:W.τ and con-
text abstraction Λψ.e. We write→ for computation-level functions.

As mentioned earlier, the language we describe in this section
may be thought of as an internal language into which source level
programs will be compiled. The extension to dependent types is
novel in that we clearly distinguish between (1) implicit data ob-
jects which occur in a type as index and are kept implicit in the
source program and (2) explicit data objects which are analyzed
recursively by pattern matching. The intuition is that implicit ar-
guments can be reconstructed when translating source programs
to our intermediate representation. We introduce abstraction over
implicit data objects occurring in a dependent type A on the com-
putation level using the dependent type Π2u::A[Ψ].τ .

Moreover, we require that patterns occurring in the branches
of case expressions are annotated with types, since the type of
each pattern need not be identical to the type of the expression
being case analyzed in the dependently-typed setting. We expect
that these annotations can be reconstructed during the compilation
from source programs to this intermediate language.

We will enforce that all context variables are bound by Λ-
abstractions. To support α-renaming of ordinary bound variables,

we write box(Ψ̂.M) where Ψ̂ is a list of variables that can possi-
bly occur in M . Index objects of dependent types are introduced
by λ2u. e of type Π2u::A[Ψ].τ . In other words, index objects are

characterized by contextual variables. i ⌈Ψ̂.M⌉ describes the ap-
plication of an index argument to an expression. The contextual
variables in branches b, declared in ∆, are instantiated using higher-
order pattern matching. We only consider patterns à la Miller [14]
where meta-variables that are subject to instantiation must be ap-
plied to a distinct set of bound variables. In our setting, this means
all contextual variables must be associated with a substitution such
as xΦ(1)/x1, . . . , xΦ(n)/xn. This fragment is decidable and has ef-
ficient algorithms for pattern matching [20, 22].

Types τ ::= A[Ψ] | τ1 → τ2 | Πψ::W.τ | Π2u::A[Ψ].τ

Expressions e ::= i | rec f.e | fn y.e | Λψ.e | λ2u. e

(checked) | box(Ψ̂.M) | case i of bs

Expressions i ::= y | i e | i ⌈Ψ⌉ | i ⌈Ψ̂.M⌉ | (e : τ )
(synth.)

Branch b ::= Π∆.box(Ψ̂.M) : A[Ψ] 7→ e

Branches bs ::= · | (b | bs)

Contexts Γ ::= · | Γ, y:τ

Figure 3. Computation-level syntax

Patterns in case expressions are annotated with their types, since
in the dependently-typed setting, the type of each pattern need not
be identical to the type of the expression being analyzed.

4.1 Computation-level typing

We describe computation-level typing using the following judg-
ments:

Ω; ∆; Γ ⊢ e⇐ τ e checks against τ
Ω; ∆; Γ ⊢ i⇒ τ i synthesizes τ
Ω; ∆; Γ ⊢ b⇐τ ′ τ branch b checks against τ ,

when case-analyzing a τ ′

The rules are given in Figure 4. The names of computation-level
rules are written with a line above to distinguish them from the
names of data-level rules, which are underlined. There are two
interesting rules. The first is turn. In this rule we check that the
computation-level types τ and τ ′ are equal. At the data level,
we only characterize canonical forms, so equality between two
dependent types A and A′ is simply syntactic equality. Hence,
equality between two computation-level types is also just syntactic
equality. This is in stark contrast to dependently-typed languages
such as Cayenne [1] and Epigram [11] that allow computations
within the index objects of dependent types. In these systems, we
cannot simply compare two types syntactically, but must evaluate
the index arguments first, before comparing the final values. Even
weaker dependently-typed systems such as DML [29], where types
are indexed by a decidable constraint domain such as integers with
linear inequalities, need efficient constraint solvers to decide type
equality.

The second interesting rule in the bidirectional type checking
algorithm is the one for branches, since the type Ak[Ψk] of each of
the patterns must be considered equal to the type A[Ψ], the type of
the expression we analyze by cases. In some approaches to depen-
dently typed programming [29], branches are checked under certain
equality constraints. Instead we propose here to solve these con-
straints eagerly using higher-order pattern unification [14]. Hence,
we restrict the contextual variables u[σ] that occur in patterns to be
higher-order patterns, i.e. the substitution σ is simply a renaming
substitution. Higher-order pattern unification is decidable, so unifi-
cation of the contexts and types is decidable. For a formal descrip-
tion of a higher-order pattern unification algorithm for contextual
variables, see Pientka [20].

We use the judgment Ω; ∆ ⊢ A
.
= Ak / (θ,∆′) to describe

higher-order pattern unification for types. ∆ describes all the meta-
variables occurring in types A and Ak. The result of unifying A
and Ak is a contextual substitution θ that maps the meta-variables
in ∆ to the meta-variables in ∆′ s.t. [[θ]]A is equal to [[θ]]Ak. This
operation can be extended to unify contexts Ψ and Ψk.

Unlike the simply-typed setting, where it is natural to require
linearity, i.e. that every contextual variable in a pattern occurs only
once, we cannot enforce a similar condition in the dependently-



Expression e checks against type τ

Ω; ∆; Γ, f :τ ⊢ e⇐ τ

Ω;∆; Γ ⊢ rec f.e⇐ τ
rec

Ω, ψ:W ;∆; Γ ⊢ e⇐ τ

Ω;∆; Γ ⊢ Λψ.e ⇐ Πψ:W.τ ΠI
Ω; ∆; Γ, y:τ1 ⊢ e⇐ τ2

Ω;∆; Γ ⊢ fn y.e⇐ τ1 → τ2
→I

Ω; ∆, u::A[Ψ]; Γ ⊢ e⇐ τ

Ω; ∆; Γ ⊢ λ2u. e ⇐ Π2u::A[Ψ].τ
Π2I

Ω; ∆;Ψ ⊢M ⇐ A

Ω; ∆; Γ ⊢ box(Ψ̂.M) ⇐ A[Ψ]
box

Ω;∆; Γ ⊢ i⇒ A[Ψ] for all k Ω; ∆; Γ ⊢ bk ⇐A[Ψ] τ

Ω; ∆; Γ ⊢ case i of b1 | . . . | bn ⇐ τ
case

∆;Γ ⊢ i⇒ τ ′ Ω; ∆ ⊢ τ ′ = τ

Ω; ∆; Γ ⊢ i⇐ τ
turn

Expression i synthesizes type τ

Ω; ∆; Γ ⊢ e⇐ τ

Ω; ∆; Γ ⊢ (e : τ ) ⇒ τ
anno

y:τ ∈ Γ

Ω;∆; Γ ⊢ y ⇒ τ
var

Ω;∆; Γ ⊢ i⇒ τ2 → τ Ω; ∆; Γ ⊢ e⇐ τ2

Ω; ∆; Γ ⊢ i e⇒ τ →E

Ω;∆; Γ ⊢ i⇒ Πψ:W.τ Ω;∆ ⊢ Ψ ⇐W

Ω;∆; Γ ⊢ i ⌈Ψ⌉ ⇒ [[Ψ/ψ]]τ
ΠE

Ω;∆; Γ ⊢ i⇒ Π2u::A[Ψ].τ Ω; ∆;Ψ ⊢M ⇐ A

Ω; ∆; Γ ⊢ i ⌈Ψ̂.M⌉ ⇒ [[Ψ̂.M/u]]τ
Π2E

Body ek checks against type τ , assuming the value cased upon has type A[Ψ]

Ω;∆k; Ψk ⊢Mk ⇐ Ak

Ω;∆,∆k ⊢ Ψ
.
= Ψk/(θ1,∆

′)
Ω;∆′ ⊢ [[θ1]]A

.
= [[θ1]]Ak / (θ2,∆

′′)
Ω;∆′′; [[θ2]][[θ1]]Γ ⊢ [[θ2]][[θ1]]ek ⇐ [[θ2]][[θ1]]τ

Ω;∆; Γ ⊢ Π∆k.box(Ψ̂.Mk) : Ak[Ψk] 7→ ek ⇐A[Ψ] τ

Figure 4. Computation-level typing rules

typed setting, because the object may become ill-typed. To il-
lustrate, consider pattern matching against the Hilbert derivation
box(ψ. mp k D[idψ]). After reconstructing the omitted implicit
arguments, we get

box(ψ. mp A[idψ] (A[idψ] imp B[idψ]) k D[idψ])

It is clear that enforcing linearity in dependently-typed patterns is
impossible.

Let us now return to the rule for branches. Branches b have the
form Π∆.box(Ψ̂.M) 7→ e where ∆ contains all the contextual

variables introduced and occurring in the guard box(Ψ̂.M). We
concentrate here on the last rule for checking the pattern in a case
expression. After typing the pattern in the case expression, we unify
the type of the subject of the case expression with the type of
the pattern. First, however, we must unify the context Ψ with the
context Ψi of the pattern. Finally, we apply the result of higher-
order unification θ to the body e and check its type.

This approach will simplify the preservation and progress proof.
It is also closer to a realistic implementation, which would support
early failure and indicate the offending branch.

Theorem 3 (Decidability of Typechecking).
Computation-level typechecking is decidable.

Proof. The typing rules are syntax-directed. Computation-level
types are in canonical form, so the equality in rule turn is syntac-
tic equality. Moreover, higher-order pattern matching is decidable.
Thus, typechecking is decidable.

Finally, we briefly remark on computation-level substitutions.
There are four varieties: [e/x]e′ describes the substitution of the
computation-level expression e for x in the computation-level ex-
pression e′. This operation is straightforward and capture-avoiding
in the case of functions fn y.e. It does not affect data-level terms,
since the computation-level variable x cannot occur in them.

The operation [[Ψ/ψ]](e) extends the previous definition of con-
text substitution to the computation level. It is capture-avoiding in
the case for context abstraction, and is propagated to the data level.

The last two varieties, [[θ]](e) and [[Ψ̂.M/u]](e), extend the
previous contextual substitution operation to the computation level
in a straightforward manner. We ensure it is capture-avoiding in
λ2-abstraction and in branches of case expressions.

4.2 Operational semantics

Next, we define a small-step evaluation judgment:

e evaluates in one step to e′ e −→ e′

Branch b matches box(Ψ̂.M) and steps to e′

(box(Ψ̂.M) : A[Ψ]
.
= b) −→ e′

In the presence of full LF we cannot erase type information com-
pletely during evaluation, since not all implicit type arguments can
be uniquely determined. In the simply-typed setting, the patterns
in the branches of a case expression must have the same type as
the case expression’s subject. However, with dependent typing, the
patterns may have different types. Hence, we first match against the
pattern’s type before matching against the pattern itself, to ensure
that the types of the subject and pattern agree. Thus, we must trans-
late the computational language into one where type annotations of
the form (e : τ ) are erased but all expressions of type A[Ψ], in
particular patterns in branches, carry their corresponding type. We
denote this translation by |e| and |i| for checked and synthesizing
expressions, respectively2.

Otherwise, the semantics is straightforward. In function applica-
tion, values for program variables are propagated by computation-
level substitution. Instantiations for context variables are propa-

2 Technically, this erasure is type-directed, and adds an annotation for the

object Ψ̂.M in i ⌈Ψ̂.M⌉ with its corresponding type. This is necessary
since contextual substitution is defined recursively on the structure of this
type (see the appendix). For conciseness we omit this type here.



Evaluation of computation:

rec f.e −→ [rec f.e/f ]e (fn y.e) v −→ [v/y]e (λ2u. e) ⌈Ψ̂.M⌉ −→ [[Ψ̂.M/u]]e

i1 −→ i′1

i1 e2 −→ i′1 e2

e2 −→ e′2

v e2 −→ v e′2

i −→ i′

i ⌈Ψ⌉ −→ i′ ⌈Ψ⌉ (Λψ.e) ⌈Ψ⌉ −→ [[Ψ/ψ]]e

i −→ i′

case i of bs −→ case i′ of bs

(box(Ψ̂.M):A[Ψ]) 6
.
= (Π∆1.box(Ψ̂.M1):A1[Ψ1]) b = Π∆1.box(Ψ̂.M1):A1[Ψ1] 7→ e1

(case (box(Ψ̂.M):A[Ψ]) of b | bs) −→ case (box(Ψ̂.M):A[Ψ]) of bs

(box(Ψ̂.M):A[Ψ])
.
= (Π∆.box(Ψ̂.M1):A1[Ψ1]) / θ b = Π∆.box(Ψ̂.M1):A1[Ψ1] 7→ e1

(case (box(Ψ̂.M):A[Ψ]) of b | bs) −→ [[θ]]e1
Evaluation of branch:

∆ ⊢ Ψk
.
= Ψ / (θ1,∆1) ∆1; Ψ ⊢ A

.
= [[θ1]]Ak / (θ2,∆2) θ = [[θ2]]θ1 ∆2; Ψ ⊢M

.
= [[θ]]Mk / (θ3, ·)

(box(Ψ̂.M) : A[Ψ]
.
= Π∆.box(Ψ̂.Mk) : Ak[Ψk]) / [[θ3]]θ

Figure 5. Operational semantics

gated by applying a concrete context Ψ to a context abstraction

Λψ.e. Index arguments are propagated in (λ2u. e) ⌈Ψ̂.M⌉ by re-

placing u with the concrete data object Ψ̂.M .
Evaluation in branches relies on higher-order pattern matching

against data-level terms to instantiate the contextual variables oc-
curring in a branch. Data-level instantiations are propagated via si-

multaneous contextual substitution. We write box(Ψ̂.M):A[Ψ] 6
.
=

Π∆1.box(Ψ̂.M1):A1[Ψ1] to mean that higher-order pattern match-

ing between box(Ψ̂.M1) and box(Ψ̂.M) failed, i.e. there exists
no instantiation for the contextual variables in ∆1 that makes these
terms equal.

We assume that box(Ψ.M) does not contain any meta-variables,
i.e. it is closed, and that its type A[Ψ] is known. Because of depen-
dent types in Ψk we must first match Ψ against Ψk, and then
proceed to match M against Mk.

Before we prove type safety for our dependently-typed func-
tional language with higher-order abstract syntax, we briefly dis-
cuss the issue of coverage. To prove progress, we must check
that the set of patterns in a case expressions covers all possible
values. In the first-order setting, this is straightforward. Given a
datatype nat with constructors Zero and Suc, the set of patterns
Z = {Zero, Suc u} covers the type nat. However, in the higher-
order setting we have open terms that can depend on assumptions.
Intuitively, given a type A[Ψ] we can generate a set of patterns by
generating patterns for type A and in addition elements from Ψ.
To generate all possible elements covering Ψ, we must inspect its
shape. If Ψ = ψ, x1:A1, . . . , xn:An, then we generate cases for
x1, . . . , xn along with a general parameter case, p[idψ]. For exam-
ple, given a type nat[ψ,x:nat] the set of patterns Z = {p[idψ],
x, Zero, Suc u[idψ]} covers all elements of this type. For a de-
tailed discussion of coverage for higher-order data of type A[Ψ],
see Dunfield and Pientka [6]. Here, we simply assume that patterns
cover all cases. First we state and prove a canonical forms lemma.

Lemma 2 (Canonical Forms).

(1) If i is a value and ·; ·; · ⊢ i⇒ τ → τ ′

then |i| = fn y.|e′| and ·; ·; y:τ ⊢ e′ ⇐ τ ′.
(2) If i is a value and ·; ·; · ⊢ i⇒ A[Ψ] then

|i| = (box(Ψ̂.M) : A[Ψ]) and ·; ·; · ⊢ box(Ψ̂.M) ⇐ A[Ψ].
(3) If i is a value and ·; ·; · ⊢ i⇒ Π2u::A[Ψ].τ

then |i| = λ2u. |e′| and ·; u::A[Ψ]; · ⊢ e′ ⇐ τ .

Proof. By induction on the typing derivation.

Theorem 4 (Preservation and Progress).

(1) If ·; ·; · ⊢ e⇐ τ and e coverage checks then either e is a value
or there exists e′ such that |e| −→ |e′| and ·; ·; · ⊢ e′ ⇐ τ .

(2) If ·; ·; · ⊢ i ⇒ τ and i coverage checks then either i is a value
or there exists i′ such that |i| −→ |i′| and ·; ·; · ⊢ i′ ⇒ τ .

Proof. By induction on the given typing derivation, using Lemma 2,
the obvious substitution properties, and coverage soundness [6] as
needed.

5. Related Work

Implementing proofs about HOAS encodings is an ambitious
project. One approach is realized in Twelf [19], an implementa-
tion of the logical framework LF where inductive proofs are im-
plemented as relations between derivations and the fact that re-
lations constitute total functions is verified separately. While the
logical framework LF itself is well-understood and has a small
type-theoretic core, the external checkers guaranteeing totality of
the implemented relations still remain mysterious to many users.
Moreover, how to automate induction proofs about LF signatures
and develop such proofs interactively has remained a major prob-
lem despite the seminal groundwork laid in Schürmann’s disser-
tation [24]. An alternative approach to proving properties about
HOAS encodings is based on generic judgments [8] and realized
in the system Abella. This approach enhances intuitionistic logic
with generic judgments, which allow for recursive definitions and
induction over natural numbers. Contexts are explicit, and the user
needs to explicitly manage and prove properties about contexts.
This is a powerful approach grounded in proof theory. In contrast,
we aim for a type-theoretic approach for programming with proofs
and explicit contexts. In particular, we characterize contexts type-
theoretically using context schemas. A potential advantage of our
approach is that we use the same functional paradigm of writing
programs and writing proofs, and hence they can live within the
same language.

Enriching functional programming with dependently-typed
higher-order data structures is a longstanding open problem and
is presently receiving widespread attention. Most closely related
to our work is Delphin [23], a dependently-typed functional pro-
gramming language that supports HOAS encodings. However, our
theoretical approach differs substantially. Most of these differences
arise because we build our type-theoretical foundation on contex-
tual modal types where A[Ψ] denotes an object M of type A in



a context Ψ. This means that the object M can refer to the vari-
ables declared in Ψ. Every data object is therefore locally closed.
Moreover, the context Ψ is explicit. An important consequence
is that, when pattern matching against data objects of type A[Ψ],
it is easy to understand intuitively when all cases are covered. A
set of patterns is exhaustive if it contains all constructors of type
A together with all the variables from Ψ. Furthermore, the power
of context variables allows us to capture more general invariants
about our programs. In Delphin, contexts are implicit and there are
no context variables. This has several consequences. For example,
the whole function and all its arguments are executed in a global
context. This is less precise and can express fewer properties on
individual data objects. Thus, one cannot express that the first ar-
gument of a function is closed, while its second argument may not
be (see the cntV example).

Despeyroux et al. [5] presented a type-theoretic foundation for
programming with HOAS that supports primitive recursion. To sep-
arate data from computation, they introduced modal types 2A that
can be injected into computation. However, all data is closed and
can only be analyzed by a primitive recursive iterator. Despeyroux
and Leleu [3, 4] extended this work to dependent types.

In recent years, various forms of dependent types have found
their way into mainstream functional programming to allow pro-
grammers to express stronger properties about their programs. Gen-
eralized algebraic datatypes [2, 16, 26] can index types by other
types and have entered mainstream languages such as Haskell. The
Dependent ML approach [29] uses indexed types with a fixed set
of constraint domains, such as integers with linear inequalities, for
which efficient decision procedures exist. However, all these sys-
tems lack the power to manipulate and analyze higher-order data.
Moreover, they do not support user-defined index domains.

Finally, there have been several proposals in the functional pro-
gramming community to allow full dependent types in languages
such as Cayenne [1] and Epigram [11]. Neither of these supports
HOAS encodings. Moreover, their approach to allowing a user-
defined index domain for dependent types is quite different: types
can be indexed with arbitrary computations. This is problematic
since equality between two types is not simple syntactic equality.
Instead, one must first evaluate index arguments. To ensure termi-
nation and hence decidability of type checking, Cayenne imposes
a heuristic, while Epigram only allows index objects defined by
well-founded recursion. This approach violates the idea that type
checking should be independent of the operational semantics, and
may be costly.

6. Conclusion

We have presented an intermediate language for programming with
dependently-typed higher-order data. This paper extends the first
author’s simply-typed work [21] to the dependently-typed setting
and lays the foundation for programming with proofs. Our frame-
work distinguishes between implicit data objects that occur in a de-
pendent type and explicit data objects that are recursively analyzed
with higher-order pattern matching. To focus on issues related to
dependent types, we omitted first-class substitutions—a concept
present in the simply-typed framework [21]—from our presenta-
tion, but there is no inherent difficulty in adding them.

When contexts are implicit, as in Twelf and Delphin, implicit
world subsumption allows one to elegantly write structured proofs
involving lemmas. In our work, we have explicit contexts. We plan
to explore an explicit notion of schema subsumption, along with
existential quantification over contexts, which should be even more
flexible and expressive.

We are in the process of completing an implementation of a type
checker and interpreter for the internal language described in this
paper. However, to make Beluga practical, we plan to address two

important questions in the near future. First, we need to reconstruct
implicit data objects occurring in computations and data. This fol-
lows similar ideas as employed in Twelf [19]. Second, we aim to re-
construct typing annotations at the branches of case expressions. In
the long term, we plan to consider the issue of termination checking
to ensure that the implemented functions actually do correspond to
inductive proofs.
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[19] F. Pfenning and C. Schürmann. System description: Twelf
— a meta-logical framework for deductive systems. In
H. Ganzinger, editor, Proceedings of the 16th International
Conference on Automated Deduction (CADE-16), pages 202–
206. Springer LNAI 1632, 1999.

[20] B. Pientka. Tabled higher-order logic programming. PhD
thesis, Department of Computer Science, Carnegie Mellon
University, 2003. CMU-CS-03-185.

[21] B. Pientka. A type-theoretic foundation for programming with
higher-order abstract syntax and first-class substitutions. In
35th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL’08), pages 371–382.
ACM, 2008.

[22] B. Pientka and F. Pfenning. Optimizing higher-order pattern
unification. In F. Baader, editor, 19th International Confer-

ence on Automated Deduction, Miami, USA, Lecture Notes in
Artificial Intelligence (LNAI) 2741, pages 473–487. Springer-
Verlag, 2003.
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A. Appendix

A.1 Ordinary substitution

In the definition for ordinary data-level substitutions, we need to
be careful because the only meaningful data-level terms are those
in canonical form. To ensure that substitution preserves canonical
form, we use a technique pioneered by Watkins et al. [28] and de-
scribed in detail in Nanevski et al. [15]. The idea is to define hered-
itary substitution as a primitive recursive functional that always re-
turns a canonical object.

In the formal development, it is simpler if we can stick to non-
dependent types. We therefore first define type approximations α
and an erasure operation ()− that removes dependencies. Before
applying any hereditary substitution [M/x]aA(B) we first erase
dependencies to obtain α = A− and then carry out the hereditary
substitution formally as [M/x]aα(B). A similar convention applies
to the other forms of hereditary substitutions. Types relate to type
approximations via an erasure operation ()− which we overload to
work on types.

Type approximations α, β ::= a | α→ β | α× β

(a N1 . . . Nn)− = a
(Πx:A . . . B)− = A− → B−

(Σx:A . . . B)− = A− ×B−

We can define [M/x]nα(N), [M/x]rα(R), and [M/x]sα(σ) by
nested induction, first on the structure of the type approximation
α and second on the structure of the objects N , R and σ. In other
words, we either go to a smaller type approximation (in which case
the objects can become larger), or the type approximation remains
the same and the objects become smaller. The following hereditary
substitution operations are defined in Figure 6.

[M/x]nα(N) = N ′ Normal terms N

[M/x]rα(R) = R′ or M ′ : α′ Neutral terms R

[M/x]sα(σ) = σ′ Substitutions σ

We write α ≤ β and α < β if α occurs in β (as a proper
subexpression in the latter case). If the original term is not well-
typed, a hereditary substitution, though terminating, cannot always
return a meaningful term. We formalize this as failure to return a
result. However, on well-typed terms, hereditary substitution will
always return well-typed terms. This substitution operation can be
extended to types for which we write [M/x]aα(A).

Theorem 5 (Termination).
The operation [M/x]∗α( ) where ∗ = {n, r, s, a} terminates, either
by returning a result or failing after a finite number of steps.

Theorem 6 (Hereditary Substitution Principles).
If ∆;Ψ ⊢ M ⇐ A and ∆;Ψ, x:A,Ψ′ ⊢ J then
∆;Ψ, [M/x]∗αΨ′ ⊢ [M/x]∗α(J) where ∗ = {n, r, s, a}.

Building on Nanevski et al. [15], we can also define simultane-
ous substitution [σ]nψ̄(M) (respectively [σ]rψ̄(R) and [σ]sψ̄(σ)). We

write ψ̄ for the context approximation of Ψ which is defined using
the erasure operation ()−.

(·)− = ·
(ψ)− = ψ
(Ψ, x:A)− = (Ψ)−, x:(A)−

A.2 Substitution for contextual variables

Substitutions for contextual variables are a little more difficult.
We have two kinds of contextual variables: meta-variables u and
parameter variables p [21].



Data-level normal terms

[M/x]nα(λy.N) = λy.N ′ where N ′ = [M/x]nα(N)
choosing y 6∈ FV(M), and y 6= x

[M/x]nα(M1,M2) = (N1, N2) if [M/x]nα(M1) = N1

and [M/x]nα(M2) = N2

[M/x]nα(R) =M ′ if [M/x]rα(R) = M ′ : α′

[M/x]nα(R) = R′ if [M/x]rα(R) = R′

[M/x]nα(N) fails otherwise

Data-level neutral terms

[M/x]rα(x) =M : α

[M/x]rα(y) = y if y 6= x

[M/x]rα(u[σ]) = u[σ′] where σ′ = [M/x]sα(σ)

[M/x]rα(p[σ]) = p[σ′] where σ′ = [M/x]sα(σ)

[M/x]rα(R N) = R′ N ′ where R′ = [M/x]rα(R)
and N ′ = [M/x]nα(N)

[M/x]rα(R N) =M ′′ : β
if [M/x]rα(R) = λy.M ′ :α1 → β where
α1 → β ≤ α and N ′ = [M/x]nα(N)
and M ′′ = [N ′/y]nα1

(M ′)

[M/x]rα(proji R) =Ni : αi if [M/x]rα(R)=(N1, N2) :α1×α2

[M/x]rα(proji R) = proji R
′ if [M/x]rα(R) = R′

[M/x]rα(R) fails otherwise

Data-level substitutions

[M/x]sα(·) = ·

[M/x]sα(σ ; N) = (σ′ ; N ′) where σ′ = [M/x]sα(σ)
and N ′ = [M/x]nα(N)

[M/x]sα(σ , R) = (σ′ , R′) if [M/x]rα(R) = R′

and σ′ = [M/x]sα(σ)
[M/x]sα(σ , R) = (σ′ ; M ′) if [M/x]rα(R) = M ′ : α′

and σ′ = [M/x]sα(σ)
[M/x]sα(idψ) = idψ
[M/x]sα(σ) fails otherwise

Figure 6. Ordinary substitution

Contextual substitution for meta-variables We write the contex-
tual substitution operations for normal objects, neutral objects, and
substitutions as follows.

[[Ψ̂.M/u]]nα[ψ̄](N) = N ′ Normal terms N

[[Ψ̂.M/u]]rα[ψ̄](R) = R′ or M ′ : α′ Neutral terms R

[[Ψ̂.M/u]]sα[ψ̄](σ) = σ′ Substitutions σ

As mentioned earlier, u[σ] represents a closure where, as soon
as we know which term u should stand for, we can apply σ to it.
Because of α-conversion, the variables substituted at different oc-
currences of u may differ, and we write Ψ̂.M to allow for neces-
sary α-renaming. The contextual substitution is indexed with the
type of u. This typing annotation is necessary since we apply the
substitution σ hereditarily once we know which term u represents,
and hereditary substitution requires the type to ensure termination.

We define the operations in Figure 7. Note that applying

[[Ψ̂.M/u]]rα[ψ̄] to the closure u[σ] first obtains the simultaneous

substitution σ′ = [[Ψ̂.M/u]]sα[ψ̄]σ, but instead of returning M [σ′],

it eagerly applies σ′ to M . However, before that we recover its
domain with [σ′/ψ̄]. To ensure that we return a normal object as a
result of contextual substitution, we use ordinary hereditary substi-
tution. For a thorough discussion, see Nanevski et al. [15].

Data-level normal terms

[[Ψ̂.M/u]]nα[ψ̄](λy.N) = λy.N ′ where [[Ψ̂.M/u]]nα[ψ̄]N = N ′

[[Ψ̂.M/u]]nα[ψ̄](N1, N2) = (N ′

1, N
′

2)

where [[Ψ̂.M/u]]nα[ψ̄](N1) = N ′

1 and [[Ψ̂.M/u]]nα[ψ̄](N2) = N ′

2

[[Ψ̂.M/u]]nα[ψ̄](R) = R′ where [[Ψ̂.M/u]]rα[ψ̄](R) = R′

[[Ψ̂.M/u]]nα[ψ̄](R) = M ′where [[Ψ̂.M/u]]rα[ψ̄](R) = M ′ : β

[[Ψ̂.M/u]]nα[ψ̄](N) fails otherwise

Data-level neutral terms

[[Ψ̂.M/u]]rα[ψ̄](x) = x

[[Ψ̂.M/u]]rα[ψ̄](u[σ]) = N : α where [[Ψ̂.M/u]]sα[ψ̄]σ = σ′

and [σ′/ψ̄]nψ̄M = N

[[Ψ̂.M/u]]rα[ψ̄](u
′[σ]) = u′[σ′] where [[Ψ̂.M/u]]sα[ψ̄]σ = σ′

choosing u′ 6= u

[[Ψ̂.M/u]]rα[ψ̄](p[σ]) = p[σ′] where [[Ψ̂.M/u]]sα[ψ̄]σ = σ′

[[Ψ̂.M/u]]rα[ψ̄](R N) = (R′ N ′) where [[Ψ̂.M/u]]rα[ψ̄]R = R′

and [[Ψ̂.M/u]]nα[ψ̄](N) = N ′

[[Ψ̂.M/u]]rα[ψ̄](R N) = M ′ : α2

if [[Ψ̂.M/u]]rα[ψ̄]R = λx.M0 : α1 → α2 for α1 → α2 ≤ α[ψ̄]

and [[Ψ̂.M/u]]nα[ψ̄](N) = N ′ and [N ′/x]nα1
(M0) = M ′

[[Ψ̂.M/u]]rα[ψ̄](projiR) = projiR
′ if [[Ψ̂.M/u]]rα[ψ̄](R) = R′

[[Ψ̂.M/u]]rα[ψ̄](projiR) = Mi : αi

if [[Ψ̂.M/u]]rα[ψ̄](R) = (M1,M2) : α1 × α2

[[Ψ̂.M/u]]rα[ψ̄](R) fails otherwise

Figure 7. Substitution for meta-variables

Contextual substitution for parameter variables Contextual sub-
stitution for parameter variables follows similar principles, but sub-
stitutes an ordinary variable for a parameter variable. We write

parameter substitutions as [[Ψ̂.x/p]]∗α[ψ̄], where ∗ ∈ {n, r, s, a}.

When we encounter a parameter variable p[σ], we replace p with

the ordinary variable x and apply the substitution [[Ψ̂.x/p]]sα[ψ̄] to

σ obtaining a substitution σ′. Instead of returning a closure x[σ′]
as the final result we apply σ′ to the ordinary variable x. This may
again yield a normal term, so we must ensure that contextual sub-
stitution for parameter variables preserves normal forms.

[[Ψ̂.x/p]]rα[ψ̄](p[σ]) = M : α if [[Ψ̂.x/p]]sα[ψ̄]σ = σ′

and [σ′/ψ̄]rψ̄x = M : α

[[Ψ̂.x/p]]rα[ψ̄](p[σ]) = R if [[Ψ̂.x/p]]sα[ψ̄]σ = σ′

and [σ′/ψ̄]rψ̄x = R

[[Ψ̂.x/p]]rα[ψ̄](p
′[σ]) = p′[σ′] where [[Ψ̂.x/p]]sα[ψ̄]σ = σ′

Theorem 7 (Termination).

[[Ψ̂.M/u]]∗α[φ̄]( ) and [[Ψ̂.x/p]]∗α[φ̄]( ) where ∗ ∈ {n, r, s, a} termi-

nate, either by returning a result or failing after a finite number of
steps.

Theorem 8 (Contextual Substitution Principles).

1. If ∆1; Φ ⊢M ⇐ A and ∆1, u::A[Φ],∆2; Ψ ⊢ J then

∆1, [[Ψ̂.M/u]]∗α[φ̄]∆2; [[Ψ̂.M/u]]∗α[φ̄]Ψ ⊢ [[Ψ̂.M/u]]∗α[φ̄]J

2. If ∆1; Φ ⊢ x⇒ A and ∆1, p::A[Φ],∆2; Ψ ⊢ J then

∆1, [[Ψ̂.x/p]]
∗

α[φ̄]∆2; [[Ψ̂.x/p]]
∗

α[φ̄]Ψ ⊢ [[Ψ̂.x/p]]∗α[φ̄]J

where ∗ = {n, r, s, a}.
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