
LFMTP 2008

Case Analysis of Higher-Order Data

Joshua Dunfield and Brigitte Pientka

School of Computer Science, McGill University
3480 rue University, Montréal, QC H3A 2A7, Canada

{joshua,bpientka}@cs.mcgill.ca

Abstract

We discuss coverage checking for data that is dependently typed and is defined using higher-order abstract
syntax. Unlike previous work on coverage checking for closed data, we consider open data which may depend
on some context. Our work may therefore provide insight into coverage checking in Twelf, and serve as a
basis for coverage checking in functional languages such as Delphin and Beluga. More generally, our work
is a foundation for proofs by case analysis in systems that reason about higher-order abstract syntax.

Keywords: higher-order abstract syntax, coverage checking

1 Introduction

Over the past decade, programming and reasoning with and about data structures

that contain binders has received widespread attention in programming languages

and automated reasoning systems. Higher-order abstract syntax (HOAS) is a sim-

ple and elegant technique for handling binders. The central idea is easily explained:

instead of representing object variables explicitly, we use meta-language variables.

For example, the object-level formula ∀x. (x = 1) ⊃ ¬(x = 0) can be represented as

forall λx. (eq x (Suc Zero)) imp (not (eq x Zero)). This avoids the need

to implement common and tricky machinery such as capture-avoiding substitution,

renaming and fresh name generation. When we implement proofs, higher-order ab-

stract syntax allows us to think of hypothetical derivations, i.e. derivations that

depend on assumptions as higher-order functions, where the application of a sub-

stitution lemma corresponds to a function application. For example, in natural

deduction (Fig. 1), the hypothetical typing derivation for implication introduction

can be elegantly modeled using higher-order functions.

The power of HOAS encodings has been shown within the logical framework LF

[HHP93] and its implementation in Twelf [PS99]. Recently, HOAS encodings are

supported in functional programming languages such as Elphin [SPS05], Delphin

[PS08], and Beluga [Pie08]. In these systems, we analyze higher-order data using

pattern matching and case expressions. This requires us to validate that the patterns

are exhaustive Similarly, proof assistants for HOAS-based reasoning that split a goal

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Dunfield and Pientka

Numbers N,M ::= x
| 0
| suc N

Propositions A ::= N = M
| A ⊃ B
| ∀x.A

nat : type .
Zero: nat.
Suc : nat → nat.

o : type .
eq : nat → nat → o.
imp : o → o → o.
forall: (nat → o) → o.

Natural Deduction Γ ⊢ nd A

Γ, u : nd A ⊢ nd B

Γ ⊢ nd A ⊃ B
⊃Iu

Γ ⊢ nd A ⊃ B Γ ⊢ nd A
Γ ⊢ nd B

⊃E

Γ ⊢ nd [a/x]A

Γ ⊢ nd (∀x.A)
∀Ia

(u : nd A) ∈ Γ

Γ ⊢ nd A
Hyp

Γ ⊢ (∀x.A)

Γ ⊢ nd [N/x]A
∀E

nd: o → type .

impi:(nd A → nd B)
→ nd (A imp B).

impe: nd (A imp B) → nd A
→ nd B.

alli: (Π a:nat. nd (A a))
→ nd (forall λx. A x).

alle: nd (forall λx. A x)
→ nd (A N).

Fig. 1. Natural deduction and its HOAS encoding

into different cases must ensure that the cases are exhaustive. This issue arises in

Twelf’s induction theorem prover [Sch00], and in systems such as Bedwyr [BGM+07]

and Abella [GMN08].

In the first-order, simply-typed setting, analyzing data by cases is straightfor-

ward. We can just consider all declared constants of a given type. To illustrate,

in Figure 1 we define a simple logic with equality on numbers in the usual style of

LF [HHP93]. The cases for the proposition A are clear: they are exactly the three

proposition forms listed in the grammar. However, for numbers we do not just need

cases for 0 and suc N , but also a case for a variable x. A similar situation comes

up with higher-order data, such as derivations in natural deduction. An encoding

based on higher-order abstract syntax does not represent the rule Hyp explicitly.

Instead, this base case will be implicit. Thus, generating all cases requires that we

consider the context and its possible elements.

Our main contribution is a theoretical framework for generating an exhaustive

set of cases for objects that may refer to assumptions, i.e. open objects. Previous

work on coverage checking handled closed terms [Coq92,SP03], or open terms within

regular worlds [Sch00, pp. 197–213]. Our work is the first theoretical treatment of

coverage in the setting of contextual modal type theory. We believe our theory is

a first step toward demystifying coverage checking in Twelf, an operation that is

mysterious to many users. More immediately, our work is a foundation for languages

such as Beluga [Pie08] that case-analyze open data. We prove a property of coverage

soundness that is needed to prove progress in Beluga.

We will begin with an example in the language Beluga, which supports pro-

gramming with LF encodings in a functional setting. To emphasize the issues due

to open terms, we will concentrate on the simply typed setting in this example.

However, our formal framework treats dependently typed terms, which makes the

problem harder. The structure of types can be observed, and this makes coverage

checking undecidable, since any set of patterns will cover all terms of an empty type

and emptiness is undecidable.

2

Dunfield and Pientka

rec cntVN : Π ψ:(nat)∗. nat[ψ,x:nat] → int =
Λ ψ ⇒ fn n ⇒ case n of

box(ψ,x. x]) ⇒ 1
| box(ψ,x. p[idψ]) ⇒ 0
| box(ψ,x. Zero) ⇒ 0

| box(ψ,x. Suc U[idψ,x]) ⇒ cntVN ⌈ψ⌉ box(ψ,x. U[idψ,x])

rec cntV : Π ψ:(nat)∗. o[ψ,x:nat] → int =
Λ ψ ⇒ fn f ⇒ case f of

box(ψ,x. eq U[idψ,x] V[idψ,x]) ⇒ cntVN ⌈ψ⌉ box(ψ,x. U[idψ,x])

+ cntVN ⌈ψ⌉ box(ψ,x. V[idψ,x])

| box(ψ,x. imp U[idψ,x] V[idψ,x]) ⇒ cntV ⌈ψ⌉ box(ψ,x. U[idψ,x])

+ cntV ⌈ψ⌉ box(ψ,x. V[idψ,x])

| box(ψ,x. forall(λy.W[idψ,x,y])) ⇒ cntV⌈ψ,y:nat⌉ box(ψ,y,x. W[idψ,x,y])

Fig. 2. Counting free variables using pattern matching and HOAS

2 Motivation

To motivate the problem, we consider a simple program in the Beluga language [Pie08]

that counts the free occurrences of some variable x in a formula. For example,

∀y.(x = y) ⊃ (suc y = suc x) has two free occurrences of x. The data language here

is first-order logic with quantification over natural numbers, as defined in Figure 1,

and we analyzes HOAS data via pattern matching. Using this example, we then

discuss in more detail the problem of coverage.

We will write two functions to solve this problem. The function cntV will re-

cursively analyze formulas. When it reaches a natural number expression, it will

call a second function cntVN. We use modal types such as o[x:nat, y:nat], which

describes a formula that can refer to the variables x and y of type nat. The formula

((eq x y) imp (eq (Suc x) (Suc y)) has this type.

When cntV recursively reaches a formula with a universal quantifier, the set of

free variables grows. Hence, we need to abstract over the contexts in which the

formula makes sense. Context variables ψ provide this ability.

The function cntV (Fig. 2) takes in a context ψ of natural numbers, a formula f,

and returns an integer. Just as types classify data objects and kinds classify types,

we introduce schemas to classify contexts. In the type declaration for the function

cntV we say that the context variable ψ has the schema (nat)∗, meaning that

ψ stands for a data-level context whose form is x1:nat,. . .,xn:nat. We use single

capital letters U, V, W for contextual variables, which are instantiated via higher-order

pattern matching.

We examine the second function, cntV, first. It is built by a context abstraction

Λ ψ that introduces the context variable ψ and binds every occurrence of ψ in the

body. Next, we introduce the computation-level variable f of type o[ψ,x:nat]. In

the body of the function cntV we case-analyze objects of type o[ψ,x:nat]. The box

construct separates data-level terms (data objects) from computation-level terms.

Since formulas are constructed by equality eq, implication imp and quantification

forall, we have cases for each of these.

When we encounter an object built from a constructor eq, imp, or forall, we

must extract the subexpression(s) underneath. Pattern variables are characterized

3

Dunfield and Pientka

by a closure U[σ] consisting of a contextual variable U and a postponed substitution

σ. As soon as we know what the contextual variable stands for, we apply the

substitution σ. In the example, the postponed substitution associated with U is

the identity substitution which essentially corresponds to α-renaming. We write

idψ for the identity substitution with domain ψ. Intuitively, one may think of the

substitution associated with contextual variables which occur in patterns as a list of

variables which may occur in the hole. Thus, in U[idψ] the contextual variable U can

be instantiated with any formula that either is closed (does not refer to any bound

variable in the context ψ) or contains a bound variable from ψ. Since subformulas

can refer to all variables in ψ,x:nat, we write U[idψ, x].

In the first case, for eq, we call cntVN to count the occurrences of x in the natural

numbers U[idψ,x] and V[idψ, x], explicitly passing ψ with cntV ⌈ψ⌉.

The second case for imp is similarly structured, calling cntV instead of cntVN.

In the third case, for box(ψ,x. forall (λy.W[idψ,x,y])), we analyze the

quantified formula under the assumption that y is a natural number. To do this,

we pass an extended context (ψ,y:nat) to cntV. The variable x appears last in

box(ψ,y,x. . . .), to match the argument type o[. . . ,x:nat].

The function cntVN counts the occurrences of a variable x in an object of type

nat[ψ,x:nat], considering four cases. The first case, box(ψ,x. x), matches an

occurrence of x. The second case, box(ψ,x. p[idψ]), matches a variable that is not

x and occurs in ψ. For this case, we use a parameter variable p (using a small letter

to distinguish it from a meta-variable). This represents a bound data-level variable.

The substitution idψ associated with p characterizes the possible instantiations of

p. The remaining cases are straightforward.

2.1 Basic idea of coverage on open data

In this paper, we provide the foundation for ensuring that case expressions which

analyze elements of type A[Ψ] via pattern matching cover all possible elements of

this type. For example, in the function cntVN we ensure that the set of patterns

{x, p[idψ], Zero, Suc U[idψ, x]} covers the type nat[ψ, x:nat]. In cntV, the set

{eq U[idψ,x] V[idψ,x], imp U[idψ,x] V[idψ,x], forall (λy.U[idψ,x,y])} covers

all elements of type o[ψ,x:nat].

This set of patterns for covering the type o[ψ,x:nat] is by no means the only

one. Instead of explicitly counting the occurrences of x in a natural number of

type nat[ψ,x:nat], we could have used higher-order pattern matching to enforce

variable dependencies, refining the pattern eq U[idψ,x] V[idψ,x] into the four cases

{eq U[idψ] V[idψ], eq U[idψ,x] V[idψ], eq U[idψ] V[idψ,x], eq U[idψ,x] V[idψ,x]}

exactly distinguishing (1) x occurs in neither U[idψ] nor V[idψ], (2) x occurs in

U[idψ,x] but not in V[idψ], (3) x occurs in V[idψ,x] but not in U[idψ], and (4) x

occurs in both U[idψ,x] and V[idψ,x].

More generally, we provide a formal framework for answering the following ques-

tion: Does a set of patterns cover the type A[Ψ]? Alternatively, our framework

provides a general way of generating a set of patterns thereby providing a founda-

tion for splitting an object of type A[Ψ] into different cases. We emphasize that

4

Dunfield and Pientka

Atomic types P ::= a M1 . . .Mn

Types A,B ::= P | Πx:A.B | Σx:A.B

Normal terms M,N ::= λx.M | (M,N) | R

Neutral terms R ::= c | x | u[σ] | p[σ] | R N | proj1R | proj2R

Substitutions σ ::= · | σ ; M | σ , R | idψ

Contexts Ψ,Φ ::= · | ψ | Ψ, x:A

Meta-contexts ∆ ::= · | ∆, u::A[Ψ] | ∆, p::A[Ψ]

Schema contexts Ω ::= · | Ω, ψ::W

Fig. 3. The data level

while we illustrate the problem in the setting of Beluga, where contexts are explicit,

the problem is similar in systems such as Delphin and Twelf, where we also must

generate all objects of type A in a context Ψ.

3 Background

Since we are interested in testing whether a set of patterns covers a given data

object, we concentrate on the data level. For the computation level, see [Pie08].

We support the logical framework LF plus dependent pairs Σ. Our data layer

closely follows contextual modal type theory [NPP08], extended with parameter

variables and context variables [Pie08], and finally with Σ types. Perhaps most im-

portantly, we formalize schemas, which classify contexts. We only characterize nor-

mal terms since only these are meaningful in the logical framework [WCPW02,NPP08].

This is achieved by a syntactic distinction between normal terms M and neutral

terms R. The syntax guarantees that terms contain no β-redexes, and the typing

rules guarantee that all well-typed terms are fully η-expanded.

We distinguish between three 1 kinds of variables (Figure 3): Ordinary bound

variables x and y are used to represent data-level binders and are bound by λ-

abstraction. These variables are declared in a context Ψ. Contextual variables

stand for open objects, and include meta-variables u and v, which represent general

open objects, and parameter variables p that can only be instantiated with an

ordinary bound variable. Contextual variables are introduced in computation-level

case expressions, and can be instantiated via pattern matching. They are associated

with a postponed substitution σ. The intent is to apply σ as soon as we know the

object the contextual variable should stand for. The domain of σ thus includes

the free variables of that object, and the type system statically guarantees this.

Contextual variables are declared in a meta-level context ∆.

Our foundation supports context variables ψ which allow us to reason abstractly

with contexts, and write recursive computations that manipulate higher-order data.

Unlike some other uses of context variables [MS04], a context may contain at most

one context variable 2 . As types classify objects, and kinds classify types, we intro-

duce the notion of schemas W that classify contexts Ψ. Context variables’ schemas

1 Prior work also considered substitution variables, which we omit here for brevity.
2 Lifting this restriction would require tracking dependencies of context variables on each other: in
ψ, x:A, ψ′, the context substituted for ψ′ could depend on x or even on variables in ψ. Ensuring that
α-renaming holds in the presence of multiple context variables and dependent types appears difficult.

5

Dunfield and Pientka

are given in a schema context Ω. We define schemas in Section 3.2.

Substitutions σ are built of normal terms (in σ ; M) and atomic terms (in σ , R).

We do not make the domain explicit, which simplifies the theoretical development

and avoids having to rename the domain of a given σ. We also have a first-class

notion of identity substitution idψ. We write [σ]N for substitution application.

We assume that type constants and object constants are declared in a signature

S as pure LF objects—data of dependent function type. We suppress the signature

since it is the same throughout all derivations. As a notational convenience, we

generalize pairs to n-ary tuples, writing proj
#
k R for the kth projection of R. For

example, the second element of a triple is proj
#
2 R = proj1(proj2 R).

3.1 Data-level typing

We type data-level terms bidirectionally. Normal objects are checked against a

given type in the judgment Ω;∆;Ψ ⊢ M ⇐ A, while neutral objects synthesize

their type: Ω;∆;Ψ ⊢ R ⇒ A. Substitutions are checked against their domain:

Ω;∆;Ψ ⊢ σ ⇐ Φ. For readability, we omit the schema context Ω in the subsequent

development since it is constant, and assume that ∆ and Ψ are well-formed.

Data-level normal terms

∆;Ψ, x:A ⊢M ⇐ B

∆;Ψ ⊢ λx.M ⇐ Πx:A.B
ΠI

∆;Ψ ⊢M1 ⇐ A1 ∆;Ψ ⊢M2 ⇐ [M1/x]
a
A1
A2

∆;Ψ ⊢ (M1,M2) ⇐ Σx:A1.A2
ΣI

∆;Ψ ⊢ R⇒ P ′ P ′ = P

∆;Ψ ⊢ R⇐ P
turn

Data-level neutral terms

x:A ∈ Ψ
∆;Ψ ⊢ x⇒ A

var c:A ∈ Σ
∆;Ψ ⊢ c⇒ A

con
u::A[Φ] ∈ ∆ ∆;Ψ ⊢ σ ⇐ Φ

∆;Ψ ⊢ u[σ] ⇒ [σ]aΦA
mvar

p::A[Φ] ∈ ∆ ∆;Ψ ⊢ σ ⇐ Φ

∆;Ψ ⊢ p[σ] ⇒ [σ]aΦA
param ∆;Ψ ⊢ R⇒ Πx:A.B ∆;Ψ ⊢ N ⇐ A

∆;Ψ ⊢ R N ⇒ [N/x]aAB
ΠE

∆;Ψ ⊢ R⇒ Σx:A1.A2

∆;Ψ ⊢ proj1R⇒ A1
ΣE1

∆;Ψ ⊢ R⇒ Σx:A1.A2

∆;Ψ ⊢ proj2R⇒ [proj1R/x]
a
A1
A2

ΣE2

Data-level substitutions
∆;Ψ ⊢ · ⇐ · ∆;ψ,Ψ ⊢ idψ ⇐ ψ

∆;Ψ ⊢ σ⇐Φ ∆;Ψ ⊢ R⇒A′ [σ]aΦA=A′

∆;Ψ ⊢ (σ ,R) ⇐ (Φ, x:A)

∆;Ψ ⊢ σ ⇐ Φ ∆;Ψ ⊢M⇐ [σ]aΦA

∆;Ψ ⊢ (σ ;M) ⇐ (Φ, x:A)

Fig. 4. Data-level typing and substitutions

We give the typing rules for data-level terms in Figure 4. We assume that data-

level type constants a together with constants c have been declared in a signature.

We will tacitly rename bound variables, and maintain that contexts and substitu-

tions declare no variable more than once. Note that substitutions σ are defined

only on ordinary variables x, not on modal variables u. We also require the usual

conditions on bound variables. For example, in ΠI the bound variable x must be

new and cannot already occur in Ψ. This can always be achieved via α-renaming.

6

Dunfield and Pientka

Element types Ã ::= Πx:A.Ã | a N1 . . . Nn

Schema elements F ::= allx1:B̃1, . . . xk:B̃k.Σy1:Ã1, . . . , yj:Ãj .Ã

Schemas W ::= (F1 + · · · + Fn)
∗

Context Ψ checks against schema W

Ω;∆ ⊢ · ⇐ W

ψ::W ∈ Ω

Ω;∆ ⊢ ψ ⇐W

for some k

Ω;∆;Ψ ⊢ A ∈ Fk Ω;∆ ⊢ Ψ ⇐ (F1 + · · · + Fn)
∗

Ω;∆ ⊢ Ψ, x:A⇐ (F1 + · · · + Fn)
∗

Type A is an instance of schema element F = all Θ̃.ΣΦ̃. B̃

Θ̃ = x1:C̃1, . . . , xn:C̃n σ = u1[id(Ψ)]/x1, . . . , un[id(Ψ)]/xn
Ω;∆, u1::C̃1[Ψ], . . . , un::C̃n[Ψ];Ψ ⊢ A

.
= [σ]ΣΦ̃.B̃ / (θ,∆)

Ω;∆;Ψ ⊢ A ∈ all Θ̃.ΣΦ̃. B̃

Fig. 5. Schemas

The typing rules for neutral terms use hereditary substitutions [· · ·]aA which preserve

canonical forms [NPP08]. Hereditary substitution is defined recursively, considering

both the structure of the term to which the substitution is applied and the type A

of the object being substituted. Due to lack of space, we relegate the details to the

appendix. We omit the subscripts for readability in what follows.

Since hereditary substitution is decidable and the rules in Figure 4 are syntax-

directed, data-level typing is decidable.

3.2 Context schemas

As the earlier example illustrated, contexts play an important part in programming

with open data objects. In particular, any contexts that are explicitly constructed

and passed will belong to a specific context schema. In the earlier example, the

schema (nat)∗ represented contexts of the form x1:nat, . . . , xn:nat. But we allow

much more expressive contexts. For instance, when reasoning about natural de-

ductions, the rule ⊃Iu adds an assumption of the form u:(nd A) for some concrete

proposition A. The inductive definition Γ′ ::= · | Γ′, x:nat, | Γ′, u:(nd A) corresponds

to the schema (nat + (allA:o. nd A))∗.

We use + to denote a choice of possible elements in a context, and all allows us

to describe an assumption for all possible propositions A. One concrete instance of

this schema is x:nat, u:nd (eq x x), which arises when describing the derivation

of forall (λx. (eq x x) imp (eq (Suc x) (Suc x))).

We give the grammar of schemas in Figure 5. Schemas are built of elements

F1, . . . , Fn, each of the form all Θ̃.Σy1:B̃1, . . . , yj:B̃j . b̃, where Θ̃ = x1:C̃1, . . . xk:C̃k.

In other words, for any instantiation of Θ̃ (that is, any substitution for x1, . . . , xk),

the element is of ΣΠ-type, where we first introduce some Σs, followed by Πs, with

no subsequent Σs. This restriction makes it easier to describe the inhabitants of

the type. Twelf has a similar restriction on worlds. In Beluga, computation typ-

ing [Pie08] guarantees that contexts matching this grammar are the only contexts

created during computation.

7

Dunfield and Pientka

To check a context Ψ against a schema (F1+· · ·+Fn), we check that each element

x:A in Ψ is an instance of a schema element Fk = all Θ̃.Σy1:B̃1, . . . , yj:B̃j . B̃, with

all variables in Θ̃ instantiated such that x:A is an instance of Fk. The rule in Figure

5 uses higher-order pattern matching. The judgment A
.
= B / (θ,∆) means that θ

is a substitution such that [[θ]]B = A.

4 Coverage checking

In this section, we present a theory for coverage checking. A derivation of a coverage

judgment is a proof that every closed term of a given type A[Ψ] is an instance of at

least one of a given set of patterns; in Beluga, this is the set of patterns guarding

the branches of a case expression. Any set of patterns covers all terms of an empty

type, and emptiness is undecidable [McB00, p. 179]. In Beluga, empty types should

be very rare. In any case, since any algorithm must be incomplete, completeness of

the theory is not essential.

Coquand [Coq92] and Schürmann and Pfenning [SP03] described coverage check-

ing for closed terms, while Schürmann [Sch00, pp. 197–213] formulated coverage for

open terms within regular worlds. Our theoretical treatment of coverage is the

first in the setting of contextual modal type theory, where objects are closed with

respect to explicit contexts that include context variables. This leads to a clean

development of coverage.

To see that a set of patterns Z (in Beluga, the guards of a case expression) covers

a given type, we usually need to split the type into an equivalent set of more precise

patterns. To see that Z = {Zero, Suc u} covers all (closed) terms of type nat[·], we

need to split nat[·] into the pattern set Z ′ = {Zero, Suc u1}. Now it is obvious that

Z covers nat[·], because Z ′—the result of splitting nat[·]—is α-equivalent to Z.

More generally, suppose we want to check that Z covers nat[Ψ]. If Ψ 6= ·,

we are dealing with open data, so when we split, we must consider variables as

well as constructors. Suppose the type is nat[ψ, x:nat, y:o], where ψ represents a

context of schema (o + nat)∗. The split then includes the constructors, parameter

variables denoting the generic case for variables from ψ (one variable for each schema

element), and the concrete variables x and y:

constructors of nat
︷ ︸︸ ︷
Zero, Suc u[idψ, x, y],

variables of ψ
︷ ︸︸ ︷
(p1[idψ] : o), (p2[idψ] : nat),

x:nat, y:o
︷︸︸︷
x, y

Not all of the variables are actually possible: p1[idψ] is of type o, but we are ana-

lyzing type nat. The concrete variable y is similarly impossible. This gives the set

{Zero, Suc u[idψ, x, y], p2[idψ], x}.

For some sets Z we would also need to split Suc’s argument u[idψ, x, y] into

its constituent constructors and variables. Decisions about when to split are not

determined by our theory; such decisions are embodied in a nondeterministic choice

between rules Obj-split and Obj-no-split. Our system is thus the foundation for a

coverage checking algorithm.

After some remarks on substitutions and higher-order pattern unification, we

state some key metatheoretical results, and then describe the coverage rules.

8

Dunfield and Pientka

We write [[θ]] for a contextual substitution substituting for u and p variables in ∆.

The judgment Ω;∆′ ⊢ θ ⇐ ∆ says that θ is a contextual substitution with domain

∆ and range ∆′, under the schema context Ω. We write ρ as an abbreviation for (1)

a context substitution on the schema context Ω, substituting for context variables

ψ, and (2) a contextual substitution θ. The judgment Ω′;∆′ ⊢ ρ : (Ω;∆) says that

the domain of ρ is (Ω;∆) and its range is Ω′;∆′. In the rules, we write data-level

substitutions as [M/x]A. This is actually hereditary substitution, but we omit the

types. See the appendix for details.

We allow higher-order patterns in the sense of Miller [Mil91], in which instanti-

ated meta-variables must be applied to distinct sets of bound variables. Thus, con-

textual variables are associated with a substitution such as xΦ(1)/x1, . . . , xΦ(n)/xn.

Matching is decidable and efficient [Pie03]. The proof of the following is a simple

extension of the one in [Pie03].

Theorem 4.1 (Soundness of higher-order pattern unification)

If P and Q are well-formed types under Ω;∆;Ψ, and Ω;∆;Ψ ⊢ Q + P / (θ,∆′),

then Ω;∆′ ⊢ θ : ∆ and Ω;∆′; [[θ]]Ψ ⊢ [[θ]]P = [[θ]]Q and θ is the most general unifier,

that is, for all ·; · ⊢ ρ : (Ω;∆) there exists ρ′ such that ρ = [[ρ′]]θ.

Lemma 4.2 (Object inversion) If ·; ·; Ψ ⊢ R⇐ P and ⊢ Ψ : W then either

(1) R = c N1 . . . Nk where S(c) = Πx1:A1. · · ·Πxk:Ak.P
′ and [σ]P ′ = P , or

(2) R = x N1 . . . Nk where (x : Πx1:A1. · · ·Πxk:Ak.P
′) ∈ Ψ and [σ]P ′ = P , or

(3) R = (proj#l y) N1 . . . Nk where (y : Σy1:Ã1, . . . ym:Ãm.Ãm+1) ∈ Ψ

and [σ]P ′ = P and [proj#1 y/y1, . . . , proj
#
l y/yl]Ãl+1 = Πx1:B1. . . .Πxk:Bk.P

′

where 1 ≤ l ≤ m,

where σ = N1/x1, . . . , Nk/xk.

Proof. By case analysis and inversion on the derivation of ·; ·; Ψ ⊢ R⇐ P . 2

4.1 Overview of coverage judgments

Given the set of guards in a case expression, Z, we assume each pattern ζ ∈ Z has

the form Π∆′. box(Ψ̂.M) : A[Ψ′], where ∆′ gives the types of contextual variables u

and p in M (which will be bound to objects and variables, respectively, when a case

expression is evaluated), where M has type A[Ψ′]. Thus, a pattern in a case ex-

pression is not simply Suc u[idψ, x], but Πu::nat[ψ, x:nat]. box(ψ, x. Suc u[idψ, x]) :

nat[ψ, x:nat]. In this example, and in many situations, ∆′ and A[Ψ′] could be omit-

ted in the source program and reconstructed. However, a dependently-typed ∆′ such

as u::(nd (eqxx))[x:nat] actually restricts u to match only natural-deduction proofs

of eq xx. Similarly, a dependently-typed A can constrain the entire pattern.

The most essential coverage judgment, Ω;∆;Ψ ⊢ Obj(A) � covered-byZ,

means that every object of type A is matched by at least one pattern in Z. For

example, if we have a derivation of Ω; ·;ψ, x:nat, y:o ⊢ Obj(nat) � covered-byZ

then Z covers the type nat[ψ, x:nat, y:o].

Such a derivation has subderivations of the general form Ω;∆;Ψ ⊢ Obj(A) � J ,

which analyzes A and gives the result as input to J , which is (algorithmically) a

kind of continuation. The earlier judgment is an instance of this form: it analyzes

A and then “continues with” covered-byZ.

9

Dunfield and Pientka

The splitting operation discussed earlier manifests as subderivations of Ω;∆;Ψ ⊢

M : A � J . Here, M is a term that plays the role of a pattern, with free variables

u[σ]. Omitting contexts for clarity, a derivation where A = nat[·] would look like

M1
︷ ︸︸ ︷
Zero :

A1
︷ ︸︸ ︷
nat[·] � J...

M2
︷ ︸︸ ︷
Suc u[·] :

A2
︷ ︸︸ ︷
nat[·] � J...

Obj(nat[·]) � J

In general, M1, . . . ,Mn collectively cover all possible terms of type A. That is, the

subderivations correspond to a split into n patterns. In the example, n = 2.

4.2 covered-by: the leaves of a coverage derivation

We said that Obj(A) � covered-byZ means to analyze A and “continue with”

covered-byZ. So, having analyzed A, splitting as necessary, we eventually come

to subderivations of Mk : Ak � covered-byZ. These are the outermost branches

of the derivation tree, and are the only places where Z is examined. Such subderiva-

tions all have the same structure: Covered-By-Z picks out one pattern ζ from the

set Z, and then Covered-By-ζ checks that Mk is an instance of ζ. 3

Ω ⊢ (Π∆.box(Ψ̂.Mk) : Ak[Ψ])
.
= ζ / (θ,∆)

Ω ⊢ Π∆.box(Ψ̂.Mk) : Ak[Ψ] covered-by ζ
Covered-By-ζ

Ω;∆;Ψ ⊢Mk : Ak � covered-by {. . . , ζ, . . . }
Covered-By-Z

We assume that the pattern ζ includes an explicit meta-variable context ∆′, explicit

data-level names Ψ̂′, and an explicit type A′[Ψ′]. Thus, the premise of Covered-By-ζ

is Ω ⊢ (Π∆.box(Ψ̂.Mk) : Ak[Ψ])
.
= (Π∆′.box(Ψ̂′.M ′) : A′[Ψ′]) / (θ,∆). This says

that Mk is an instance of M ′ realized by θ, that is, Mk = [[θ]]M ′. If each Mk is an

instance of some pattern in Z, then Z covers all inhabitants of A.

4.3 Rules deriving Obj(A) � J

Having explained the high-level structure of coverage derivations and the details of

the leaves, we can discuss the rules with conclusions of the form Obj(A) �J . These

are the four rules at the bottom of Figure 6.

If A = Πx:A1.A2, we use Obj-Π to peel off the Π and analyze A2. The lam is

added because after analyzing A2, we need to put back the Π and add a λ:

Ω;∆;Ψ ⊢ (λx.M) : (Πx:A1.A
′
2) � J

Ω;∆;Ψ ⊢M : A′
2 � lam � J
...

Ω;∆;Ψ, x:A1 ⊢ Obj(A2) � lam � J

Ω;∆;Ψ ⊢ Obj(Πx:A1.A2) � J
Obj-Π

3 Note that we need matching, not just equality, in Covered-By-ζ. Suppose Z = {(u1[·],Zero), (Zero, u2[·])}.
To show that (Zero, Suc v2[·]) is covered (by the second pattern in Z), we need to split the first component,
and to show that (Suc v1[·], Zero) is covered (by the first pattern in Z), we need to split the second
component. This results in a set of patterns including (Zero, Zero), which is not equal to any pattern in Z.

10

Dunfield and Pientka

Ω ⊢ Π∆.box(Ψ̂.M) : A[Ψ] covered-by ζ

Ω ⊢ (Π∆.box(Ψ̂.M) : A[Ψ])
.
= (Π∆′.box(Ψ̂′.M ′) : A′[Ψ′]) / (θ,∆)

Ω ⊢ Π∆.box(Ψ̂.M) : A[Ψ] covered-by (Π∆′.box(Ψ̂.M ′) : A′[Ψ′])
Covered-By-ζ

Ω;∆;Ψ ⊢ App〈R〉(A > P) � J

Ω;∆;Ψ ⊢ Q 6 6+ P

Ω;∆;Ψ ⊢ App〈R〉(Q > P) � J
App-6 6+

Ω;∆;Ψ ⊢ Q + P / (θ,∆′)

Ω;∆′; [[θ]]Ψ ⊢ [[θ]]R : [[θ]]P � [[θ]]J

Ω;∆;Ψ ⊢ App〈R〉(Q > P) � J
App-+

Ω;∆;Ψ ⊢ App〈R M〉([M/x]B > P) � J

Ω;∆;Ψ ⊢M : A � neutral〈R〉(x.B > P) � J

Ω;∆;Ψ ⊢ Obj(A) � neutral〈R〉(x.B > P) � J

Ω;∆;Ψ ⊢ App〈R〉(Πx:A.B > P) � J
App-Π

for 0 ≤ i ≤ m:

Ω;∆;Ψ ⊢ App〈proj#i R〉([proj
#
1 R/x1, . . . , proj

#
i R/xi]Ãi+1 > P) � J

Ω;∆;Ψ ⊢ App〈R〉(Σx1:Ã1, . . . , xm:Ãm.Ãm+1 > P) � J
App-Σ

Ω;∆;Ψ ⊢M : A � J Ω ⊢ Π∆.box(Ψ̂.M) : A[Ψ] covered-by ζk
Ω;∆;Ψ ⊢M : A � covered-by{ζ1, . . . , ζn}

Covered-By-Z

Ω; ∆; Ψ ⊢ (λx.M) : (Πx:A1.A2) � J

Ω; ∆; Ψ, x:A1 ⊢M : A2 � lam � J

Ω; ∆; Ψ ⊢ (M,N) : Σx:A1.A2 � J

Ω; ∆; Ψ ⊢ N : [M/x]A2 � pair2 (M :A1, x.•) � J

Ω; ∆; Ψ ⊢ Obj([M/x]A2) � pair2 (M :A1, x.•) � J

Ω; ∆; Ψ ⊢M : A1 � pair1 (•, x.A2) � J
Ω;∆;Ψ ⊢ Obj(A) � J

Ω; ∆; Ψ, x:A1 ⊢ Obj(A2) � lam � J

Ω; ∆; Ψ ⊢ Obj(Πx:A1.A2) � J
Obj-Π

Ω; ∆; Ψ ⊢ Obj(A1) � pair1 (•, x.A2) � J

Ω; ∆; Ψ ⊢ Obj(Σx:A1.A2) � J
Obj-Σ

Ω;∆;Ψ ⊢ MVars(P) � J

Ω;∆;Ψ ⊢ Obj(P) � J
Obj-no-split

Ψ = ψ, x1:ΣΨ̃1.Ã1, . . . , xk:ΣΨ̃k.Ãk
Ω(ψ) = F1 + · · · + Fm
Ω;∆;Ψ ⊢ PVars〈ψ : F1〉 > P � J

...

Ω;∆;Ψ ⊢ PVars〈ψ : Fm〉 > P � J

Ω;∆;Ψ ⊢ App〈x1〉(ΣΨ̃1.Ã1 > P) � J
...

Ω;∆;Ψ ⊢ App〈xk〉(ΣΨ̃k.Ãk > P) � J

Ω;∆;Ψ ⊢ App〈c1〉 (S(c1) > P) � J
...

Ω;∆;Ψ ⊢ App〈cn〉 (S(cn) > P) � J

Ω;∆;Ψ ⊢ Obj(P) � J
Obj-split

Fig. 6. Coverage checking rules

11

Dunfield and Pientka

Note that since splitting A2 may produce several patterns, we may have more sub-

derivations (λx. . . .) : (Πx:A1. · · ·) than just the one shown.

If A = Σx:A1.A2, rule Obj-Σ first analyzes A1 and then A2. The rules in Figure 6

are laid out vertically, in the same order as they appear in a derivation.

For base types P , we can either not split (rule Obj-no-split) or split (rule Obj-split).

The latter rule is less complicated than it may look. The point is to split into pat-

terns R N1 . . . Nm, where R is a parameter p[σ] (left-hand premises), variable x

(upper-right-hand premises), or constructor c (lower-right-hand premises),

The simplest of these are the premises App〈ck〉(S(ck) > P) for constructors c.

These cover all constructors ck, even those for base types that are incompatible with

P—those will be discarded further up the derivation.

Deriving premises of the form Ω;∆;Ψ ⊢ App〈R〉(S(ck) > P) � J is somewhat

involved, since we need to generate all spines (lists of arguments) N1 . . . Nm. Here,

the P denotes that we are constructing objects of type P . The constructor type

S(ck) must have the form Πx1:A1. · · ·Πxm:Am.Q, whereQ is a base type. In deriving

this, we use App-Π, which uses Obj(A1) to analyze A1, and (through neutral) adds

the resulting inhabitants M1 of A1 to ck.

Doing this for each xi:Ai yields subderivations of App〈ck N1 . . . Nm〉(Q > P), for

various spines N1 . . . Nm. If Q and P do not unify (written Q 6 6+ P in rule App-6 6+)

we have a trivial coverage subderivation, but if Q and P do unify under some θ,

then we can use App-+, which has a premise [[θ]]R : [[θ]]P � [[θ]]J .

Returning to rule Obj-split itself, the premises App〈xk〉(B > P) �J for variables

are structurally similar to those for constructors. However, unlike S(ck), the variable

type B could contain Σs, so we use App-Σ to take projections out of the tuple.

The remaining premises of Obj-split have the form PVars〈ψ : F 〉 > P � J ,

characterizing the generic variable cases.

4.4 PVars〈ψ : F 〉 > P � J : Parameter variables

Exactly one rule concludes PVars〈. . .〉, the rule PVars in Figure 7. In PVars, we gen-

erate a parameter variable for each schema element. We first create a meta-variable

for each all -quantified variable in the element. For example, if F = allA:o.ndA,

then p[idψ] has type nd u[idψ] where u is a (fresh) meta-variable. In general, we get

the type of a parameter from the element all Θ̃.ΣΦ̃.Ã by generating a substitution

σ′ that instantiates all variables in Θ̃ with meta-variables, and applying σ′ to ΣΦ̃.Ã.

Then we use the ideas for concrete variables. Again, since [σ′]ΣΦ̃.Ã is inhabited by

tuples, we consider all possible projections.

4.5 MVars(P) � J : General case for all ground instances of P

The premise of rule Obj-no-split is MVars(P), which is derivable only by rule MVars

(Figure 7). This rule does not recursively analyze the given type P . Instead, it

produces patterns u[id(Ψk)], which any object of type P [Ψk] matches. 4

Simply generating u[id(Ψ)] does not suffice if the user wrote cases with different

contexts, as when eq U[idψ, x] V[idψ, x] is written as four cases {eq U[idψ] V[idψ],

4 The operation id(Ψ) unrolls Ψ. For example, id(ψ, x:nat) = idψ , x. See the appendix for details.

12

Dunfield and Pientka

Ω;∆;Ψ ⊢ PVars〈ψ : all Θ̃.ΣΦ̃. Ãj+1〉 > P � J

Θ̃ = y1:B̃1, . . . , yn:B̃n and Φ̃ = x1:Ã1, . . . , xj:Ãj
σ = u1[idψ]/y1, . . . , un[idψ]/yn ∆Θ = u1::B̃1[ψ], . . . , un::B̃n[ψ]

for 0 ≤ i ≤ j:

σ′ = (proj#1 p[idψ])/x1, . . . , (proj
#
i p[idψ])/xi

Ω;∆,∆Θ, p::[σ]((ΣΦ̃.Ãj+1)[ψ]);Ψ ⊢ App〈proj#i+1 p[idψ]〉([σ′][σ]Ãi+1 > P) � J

Ω;∆;Ψ ⊢ PVars〈ψ : all Θ̃.ΣΦ̃.Ãj+1〉 > P � J
PVars

Ω;∆;Ψ ⊢ MVars(P) � J

ValidWk(Ω;∆ ⊢ P [Ψ])

= {Ψ1, . . . ,Ψn}

Ω;∆, u::P [Ψ1]; Ψ ⊢ (u[id(Ψ1)] : P) � J
...

Ω;∆, u::P [Ψn]; Ψ ⊢ (u[id(Ψn)] : P) � J

Ω;∆;Ψ ⊢ MVars(P) � J
MVars

Fig. 7. Coverage checking rules (continued)

eq U[idψ, x] V[idψ], eq U[idψ] V[idψ,x], eq U[idψ, x] V[idψ, x]}.

In fact, we generate all valid weakenings of Ψ. A weakening Ψ′ ⊆ Ψ has zero or

more assumptions from Ψ (preserving order). These contexts are weaker because

they provide less information. Not all weakenings make sense; for example, remov-

ing x:nat from (x:nat, y:(eq x x)) yields (y:(eq x x)), which is dependent on an

undeclared x. The valid weakenings ValidWk(Ω;∆ ⊢ A[Ψ]) of a context Ψ with

respect to a type A are those that are well-formed and make A well-formed.

4.6 Coverage soundness

Roughly, the soundness result we need is that, if ·; ·; Ψ ⊢ Obj(A) � covered-byZ,

then for every M of type A there is a pattern in Z that matches M . That theorem

will not be difficult once we have a key lemma, which will guarantee that if D derives

Obj(A) � J then, for every ground M ′ of type A, there is within D a derivation of

Mi : A � J , where M ′ is an instance of Mi. Put another way, the lemma states

that the illustration from Section 4.1 is accurate.

Once we have this lemma, soundness is straightforward: if J = covered-byZ,

the lemma gives a subderivation D′ of . . . ⊢M : A � covered-byZ, and inversions

bring us to the premise of Covered-By-Z.

To state the lemma precisely, we first observe that the judgment form Ω;∆;Ψ ⊢

Obj(A) � J allows for nonempty Ω and ∆. However, at runtime, we only have

concrete contexts, so Ω is empty. Also, objects are ground, containing no contextual

variables u and p, so ∆ is empty. We can of course have a nonempty Ψ, though

since Ω is empty, Ψ will contain no context variables.

Thus, the antecedent that M ′ has type A can be ground: ·; ·; [[ρ]]Ψ ⊢M ′ ⇐ [[ρ]]A,

where Ω and ∆ are grounded by ·; · ⊢ ρ : (Ω;∆). In addition, the domain of D′ need

not exactly match the domain of D. In fact, the type in D′ will be [[θ]]A, where

θ is a substitution from ∆ to ∆′. This is consistent with the intuition that types

become more precise as we move into subderivations.

13

Dunfield and Pientka

As we have θ from ∆ to ∆′, and ρ from (Ω;∆) to ground (·; ·), the lemma also

asserts the existence of a ρ′ from (Ω;∆′) to ground, so that ρ = [[ρ′]]θ.

In part (2) of the lemma, we reason correspondingly about App derivations.

Lemma 4.3 (Coverage Soundness)

(1) If D :: Ω;∆;Ψ ⊢ Obj(A) � J and ·; ·; [[ρ]]Ψ ⊢M ′ ⇐ [[ρ]]A and ·; · ⊢ ρ : (Ω;∆)

then there exist θ and M such that Ω;∆′ ⊢ θ ⇐ ∆

and D′ :: Ω;∆′; [[θ]]Ψ ⊢M : [[θ]]A � [[θ]]J where D′ < D

and Ω;∆′; [[θ]]Ψ ⊢M ⇐ [[θ]]A and there exists ρ′ s.t. ρ = [[ρ′]]θ and M ′ = [[ρ′]]M .

(2) If D :: Ω;∆;Ψ ⊢ App〈R〉(Ã > P) � J and Ω;∆;Ψ ⊢ R⇒ Ã

and ·; · ⊢ ρ : (Ω;∆) and for all spines N ′
1, . . . , N

′
n of some length n such that

·; ·; [[ρ]]Ψ ⊢ ([[ρ]]R) N ′
1 . . . N

′
n ⇐ [[ρ]]P ,

then D′ :: Ω;∆′; [[θ]]Ψ ⊢ [[θ]](R N1 . . . Nn) : [[θ]]P � [[θ]]J

and for all i we have [[ρ]]Ni = N ′
i and there exists ρ′ s.t. ρ = [[ρ′]]θ.

Proof. By complete induction on the height of D. 2

Theorem 4.4 (Coverage Soundness)

If ·; ·; Ψ ⊢M ′ ⇐ A and ·; ·; Ψ ⊢ Obj(A) � covered-byZ

then there exists ζ ∈ Z such that ζ = (Π∆k.box(Ψ̂.Mk) : Ak[Ψk])

and · ⊢ (Π∆′.box(Ψ̂.M) : A[Ψ])
.
= ζ / (θk,∆

′) where M ′ = [[ρ′]][[θk]]Mk.

Proof. By Lemma 4.3, inversion, and correctness of higher order matching. 2

5 Conclusion

Most previous work on coverage checking, such as Coquand’s work [Coq92] in the

setting of Agda and later refinements of this approach [McB00,Nor07], dealt with

closed data objects. In the setting of logical frameworks, theoretical work on cov-

erage also concentrated on closed objects [SP03]. In contrast, we have presented

a framework for coverage checking terms that depend on assumptions in a given

context. Schemas and parameter variables allow us to analyze generic cases for all

objects represented by a context variable.

We have concentrated on the Beluga language, but systems like Delphin and

Twelf have to address a very similar issue. In Twelf, contexts are characterized by

world declarations. However, there is an important difference between worlds and

schemas. In Twelf, to count free occurrences of a variable, we would write a relation.

But there is no way to write a generic base case for all possible variables occurring

in a context represented by ψ. Instead, we must introduce dynamic extensions for

each variable encountered when we traverse a binder. Thus, the world declaration

not only captures the bound variables introduced when we traverse a binder, but

also a base case for each binder. Consequently, some of the base cases are scattered,

and world declarations tend to be more complicated than our schema declarations.

It also makes world and coverage checking significantly more complicated.

Delphin has no explicit context variables and distinguishes parameters at the

type level, rather than the syntax level. Nevertheless, we believe our framework

could provide insights into the Delphin coverage checker [PS08] as well.

14

Dunfield and Pientka

We plan to implement a coverage algorithm based on the ideas in this paper

within the Beluga prototype.

References

[BGM+07] David Baelde, Andrew Gacek, Dale Miller, Gopalan Nadathur, and Alwen Tiu. The Bedwyr
system for model checking over syntactic expressions. In Frank Pfenning, editor, 21st
Conference on Automated Deduction, number 4603 in LNAI, pages 391–397. Springer, 2007.

[Coq92] Thierry Coquand. Pattern matching with dependent types. In Informal Proceedings of
Workshop on Types for Proofs and Programs, pages 71–84. Dept. of Computing Science,
Chalmers Univ. of Technology and Göteborg Univ., 1992.

[GMN08] Andrew Gacek, Dale Miller, and Gopalan Nadathur. Combining generic judgments with
recursive definitions. In F. Pfenning, editor, 23rd Symposium on Logic in Computer Science.
IEEE Computer Society Press, 2008.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143–184, January 1993.

[McB00] Conor McBride. Dependently Typed Functional Programs and Their Proofs. PhD thesis,
University of Edinburgh, 2000. Technical Report ECS-LFCS-00-419.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction, function variables, and
simple unification. Journal of Logic and Computation, 1(4):497–536, 1991.

[MS04] Andrew McCreight and Carsten Schürmann. A meta-linear logical framework. In 4th
International Workshop on Logical Frameworks and Meta-Languages (LFM’04), 2004.

[Nor07] Ulf Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Department of Computer Science and Engineering, Chalmers University of Technology,
September 2007.

[NPP08] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
ACM Transactions on Computational Logic, 9(3), 2008.

[Pie03] Brigitte Pientka. Tabled higher-order logic programming. PhD thesis, Department of Computer
Science, Carnegie Mellon University, 2003. CMU-CS-03-185.

[Pie08] Brigitte Pientka. A type-theoretic foundation for programming with higher-order abstract
syntax and first-class substitutions. In 35th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’08), pages 371–382. ACM, 2008.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical
framework for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th International
Conference on Automated Deduction (CADE-16), pages 202–206. Springer LNAI 1632, 1999.

[PS08] Adam Poswolsky and Carsten Schürmann. Practical programming with higher-order encodings
and dependent types. In Proceedings of the 17th European Symposium on Programming (ESOP
’08), March 2008.

[Sch00] Carsten Schürmann. Automating the Meta Theory of Deductive Systems. PhD thesis,
Department of Computer Science, Carnegie Mellon University, 2000. CMU-CS-00-146.

[SP03] Carsten Schürmann and Frank Pfenning. A coverage checking algorithm for LF. In D. Basin
and B. Wolff, editors, Proceedings of the 16th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs’03), volume 2758 of Lecture Notes in Computer Science, pages
120–135, Rome, Italy, 2003. Springer.

[SPS05] Carsten Schürmann, Adam Poswolsky, and Jeffrey Sarnat. The ∇-calculus. Functional
programming with higher-order encodings. In Pawel Urzyczyn, editor, Proceedings of the 7th
International Conference on Typed Lambda Calculi and Applications (TLCA’05), volume 3461
of Lecture Notes in Computer Science, pages 339–353. Springer, 2005.

[WCPW02] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent logical
framework I: Judgments and properties. Technical Report CMU-CS-02-101, Department of
Computer Science, Carnegie Mellon University, 2002.

15

Dunfield and Pientka

A Appendix: Substitutions

A.1 Ordinary substitution

In the definition of ordinary data-level substitutions, we need to be careful because

the only meaningful data-level terms are those in canonical form. To ensure that

substitution preserves canonical form, we use a technique pioneered by Watkins et

al. [WCPW02] and described in detail in [NPP08]. The idea is to define heredi-

tary substitution as a primitive recursive functional that always returns a canonical

object.

In the formal development, it is simpler if we can stick to non-dependent types.

We therefore first define type approximations α and an erasure operation ()− that

removes dependencies. Before applying any hereditary substitution [M/x]aA(B) we

first erase dependencies to obtain α = A− and then carry out the hereditary sub-

stitution formally as [M/x]aα(B). A similar convention applies to the other forms of

hereditary substitutions.

Type approximations α, β ::= a | α→ β | α× β

Types relate to type approximations via an erasure operation ()− which we overload

to work on types.

(a N1 . . . Nn)
− = a

(Πx:A . . . B)− = A− → B−

(Σx:A . . . B)− = A− ×B−

We can define [M/x]nα(N), [M/x]rα(R), and [M/x]sα(σ) by nested induction, first

on the structure of the type approximation α and second on the structure of the

objects N , R and σ. In other words, we either go to a smaller type approximation

(in which case the objects can become larger), or the type approximation remains

the same and the objects become smaller. We define the hereditary substitution

operations in Figure A.1. We write α ≤ β and α < β if α occurs in β (as a proper

subexpression in the latter case). If the original term is not well-typed, a hereditary

substitution, though terminating, cannot always return a meaningful term. We

formalize this as failure to return a result. However, on well-typed terms, hereditary

substitution will always return well-typed terms. This substitution operation can

be extended to types for which we write [M/x]aα(A).

Theorem A.1 (Termination)

[M/x]∗α() where ∗ = {n, r, s, a} terminates, either by returning a result or failing

after a finite number of steps.

Theorem A.2 (Hereditary Substitution Principles)

If ∆;Ψ ⊢M ⇐ A and ∆;Ψ, x:A,Ψ′ ⊢ J

then ∆;Ψ, [M/x]∗αΨ′ ⊢ [M/x]∗α(J) for all ∗ ∈ {n, r, s, a}.

Building on the ideas in [NPP08], we can also define simultaneous substitution

[σ]n
ψ̄
(M) (respectively [σ]r

ψ̄
(R) and [σ]s

ψ̄
(σ)). We write ψ̄ for the context approxi-

16

Dunfield and Pientka

[M/x]nα(N) = N ′ Normal terms N

[M/x]rα(R) = R′ or M ′ : α′ Neutral terms R

[M/x]sα(σ) = σ′ Substitutions σ

Data-level normal terms

[M/x]nα(λy.N) = λy.N ′ where N ′ = [M/x]nα(N)
choosing y 6∈ FV(M), and y 6= x

[M/x]nα(M1,M2) = (N1, N2) if [M/x]nα(M1) = N1 and [M/x]nα(M2) = N2

[M/x]nα(R) = M ′ if [M/x]rα(R) = M ′ : α′

[M/x]nα(R) = R′ if [M/x]rα(R) = R′

[M/x]nα(N) fails otherwise

Data-level neutral terms

[M/x]rα(x) = M : α

[M/x]rα(y) = y if y 6= x

[M/x]rα(u[σ]) = u[σ′] where σ′ = [M/x]sα(σ)

[M/x]rα(p[σ]) = p[σ′] where σ′ = [M/x]sα(σ)

[M/x]rα(R N) = R′ N ′ where R′ = [M/x]rα(R) and N ′ = [M/x]nα(N)

[M/x]rα(R N) = M ′′ : β if [M/x]rα(R) = λy.M ′ :α1 → β
where α1 → β ≤ α and N ′ = [M/x]nα(N)
and M ′′ = [N ′/y]nα1

(M ′)

[M/x]rα(proji R) = Ni : αi if [M/x]rα(R) = (N1, N2) :α1 × α2

[M/x]rα(proji R) = proji R
′ if [M/x]rα(R) = R′

[M/x]rα(R) fails otherwise

Data-level substitutions

[M/x]sα(·) = ·

[M/x]sα(σ ; N) = (σ′ ; N ′) where σ′ = [M/x]sα(σ) and N ′ = [M/x]nα(N)

[M/x]sα(σ , R) = (σ′ , R′) if [M/x]rα(R) = R′ and σ′ = [M/x]sα(σ)

[M/x]sα(σ , R) = (σ′ ; M ′) if [M/x]rα(R) = M ′ : α′ and σ′ = [M/x]sα(σ)

[M/x]sα(idψ) = idψ

[M/x]sα(σ) fails otherwise

Fig. A.1. Hereditary substitution (data-level)

mation of Ψ which is defined using the erasure operation ()−.

(·)− = ·

(ψ)− = ψ

(Ψ, x:A)− = (Ψ)−, x:(A)−

A.2 Substitution operations

The different variables (ordinary variables x, context variables ψ, and contextual

variables u[σ] and p[σ]) give rise to different substitution operations. The re-

17

Dunfield and Pientka

maining substitution operations do not require any significant changes from earlier

work [Pie08,NPP08] to handle dependent types, and we revisit them in this section.

Substitution for context variables

If we encounter a context variable ψ, we simply replace it with the context Ψ.

Data-level context

[[Ψ/ψ]](·) = ·

[[Ψ/ψ]](Φ, x:A) = (Φ′, x:A′) if x /∈ V(Φ′), [[Ψ/ψ]]A = A′, [[Ψ/ψ]]Φ = Φ′

[[Ψ/ψ]](ψ) = Ψ

[[Ψ/ψ]](φ) = φ if φ 6= ψ

When we apply the substitution [[Ψ/ψ]] to the context Φ, x:A, we apply the sub-

stitution to the type A, yielding some new type A′, and to the context Φ, yielding

some new context Φ′. Applying the substitution to the type A is necessary in the

dependently-typed setting, since A may contain terms and in particular identity

substitutions idψ. When we replace ψ with Ψ in the substitution idψ, we unfold

the identity substitution. Expansion of the identity substitution is defined by the

operation id(Ψ) for valid contexts Ψ:

id(·) = ·

id(Ψ, x:A) = id(Ψ) , x

id(ψ) = idψ

Lemma A.3 (Unfolding identity substitution)

If id(Ψ) = σ then ∆;Ψ,Ψ′ ⊢ σ ⇐ Ψ.

Proof. By induction on the structure of Ψ. 2

When we combine Φ′ and the declaration x:A′ to yield a new context, we must

ensure that x is not already declared in Φ′. This can always be achieved by ap-

propriately renaming bound variable occurrences. We write V(Φ′) for the set of

variables declared in Φ′. The rest of the definition is mostly straightforward.

Theorem A.4 (Substitution for context variables)

If Ω, ψ::W,Ω′;∆;Φ ⊢ J and Ω ⊢ Ψ ⇐W then Ω,Ω′; [[Ψ/ψ]]∆; [[Ψ/ψ]](Φ) ⊢ [[Ψ/ψ]]J .

Proof. By induction on the first derivation using Lemma A.3. 2

Contextual substitution for contextual variables

Substitution for contextual variables is a little more difficult, but is essentially sim-

ilar to the definitions in [Pie08]. We can think of u[σ] as a closure where, as soon

as we know which term u should stand for, we can apply σ to it. The typing will

ensure that the type of M and the type of u agree, i.e. we can replace u of type A[Ψ]

with a normal term M if M has type A in the context Ψ. Because of α-conversion,

the variables substituted at different occurrences of u may differ, and we write the

contextual substitution as [[Ψ̂.M/u]](N), [[Ψ̂.M/u]](R), and [[Ψ̂.M/u]](σ), where Ψ̂

binds all free variables in M . Applying [[Ψ̂.M/u]] to the closure u[σ] first obtains the

18

Dunfield and Pientka

simultaneous substitution σ′ = [[Ψ̂.M/u]]σ, but instead of returningM [σ′], it eagerly

applies σ′ to M . Similar ideas apply to parameter substitutions, which are writ-

ten [[Ψ̂.x/p]](M), [[Ψ̂.x/p]](R) and [[Ψ̂.x/p]](σ). Parameter substitution could not be

achieved with the previous definition of contextual substitution for meta-variables,

since it only allows us to substitute a normal term for a meta-variable, and x is only

normal if it is of atomic type.

Finally, we use simultaneous contextual substitutions, built of either meta-

variables, (θ, Ψ̂.M/u), or parameter variables, (θ, Ψ̂.x/p). The judgment ∆ ⊢ θ ⇐

∆′ checks that the contextual substitution θ maps contextual variables from ∆′ to

the contextual variables in ∆.

Simultaneous contextual substitution

∆ ⊢ · ⇐ ·

∆ ⊢ θ ⇐ ∆′ ∆; [[θ]]Ψ ⊢M ⇐ [[θ]]A

∆ ⊢ (θ, Ψ̂.M/u) ⇐ ∆′, u::A[Ψ]

∆ ⊢ θ ⇐ ∆′ ∆; [[θ]]Ψ ⊢ x⇒ A′ A′ = [[θ]]A

∆ ⊢ (θ, Ψ̂.x/p) ⇐ ∆′, p::A[Ψ]

A.2.1 Contextual substitution for meta-variables

We define the contextual substitution operations for normal object, neutral objects

and substitutions as follows.

[[Ψ̂.M/u]]nα[ψ̄](N) = N ′ Normal terms N

[[Ψ̂.M/u]]rα[ψ̄](R) = R′ or M ′ : α′ Neutral terms R

[[Ψ̂.M/u]]sα[ψ̄](σ) = σ′ Substitutions σ

As mentioned earlier, u[σ] represents a closure where, as soon as we know which

term u should stand for, we can apply σ to it. Because of α-conversion, the variables

substituted at different occurrences of u may differ, and we write Ψ̂.M to allow for

necessary α-renaming. The contextual substitution is indexed with the type of u.

This typing annotation is necessary since we apply the substitution σ hereditarily

once we know which term u represents, and hereditary substitution requires the

type to ensure termination.

Data-level normal terms

[[Ψ̂.M/u]]nα[ψ̄](λy.N) = λy.N ′ where [[Ψ̂.M/u]]nα[ψ̄]N = N ′

[[Ψ̂.M/u]]nα[ψ̄](N1, N2) = (N ′
1, N

′
2)

where [[Ψ̂.M/u]]nα[ψ̄](N1) = N ′
1 and [[Ψ̂.M/u]]nα[ψ̄](N2) = N ′

2

[[Ψ̂.M/u]]nα[ψ̄](R) = R′ where [[Ψ̂.M/u]]rα[ψ̄](R) = R′

[[Ψ̂.M/u]]nα[ψ̄](R) = M ′ where [[Ψ̂.M/u]]rα[ψ̄](R) = M ′ : β

[[Ψ̂.M/u]]nα[ψ̄](N) fails otherwise

In the following, note that applying [[Ψ̂.M/u]]rα[ψ̄] to the closure u[σ] first obtains

the simultaneous substitution σ′ = [[Ψ̂.M/u]]sα[ψ̄]σ, but instead of returning M [σ′],

19

Dunfield and Pientka

it eagerly applies σ′ to M . However before that we recover its domain by [σ′/ψ̄].

To enforce that we always return a normal object as a result of contextual substi-

tution, we resort to ordinary hereditary substitution. For a thorough explanation,

see [NPP08].

Data-level neutral terms

[[Ψ̂.M/u]]rα[ψ̄](x) = x

[[Ψ̂.M/u]]rα[ψ̄](u[σ]) = N : α where [[Ψ̂.M/u]]sα[ψ̄]σ = σ′ and [σ′/ψ̄]n
ψ̄
M = N

[[Ψ̂.M/u]]rα[ψ̄](u
′[σ]) = u′[σ′] where [[Ψ̂.M/u]]sα[ψ̄]σ = σ′ choosing u′ 6= u

[[Ψ̂.M/u]]rα[ψ̄](p[σ]) = p[σ′] where [[Ψ̂.M/u]]sα[ψ̄]σ = σ′

[[Ψ̂.M/u]]rα[ψ̄](R N) = (R′ N ′) where [[Ψ̂.M/u]]rα[ψ̄]R = R′ and [[Ψ̂.M/u]]nα[ψ̄](N) = N ′

[[Ψ̂.M/u]]rα[ψ̄](R N) = M ′ : α2

if [[Ψ̂.M/u]]rα[ψ̄]R = λx.M0 : α1 → α2 for α1 → α2 ≤ α[ψ̄]

and [[Ψ̂.M/u]]nα[ψ̄](N) = N ′ and [N ′/x]nα1
(M0) = M ′

[[Ψ̂.M/u]]rα[ψ̄](projiR) = projiR
′ if [[Ψ̂.M/u]]rα[ψ̄](R) = R′

[[Ψ̂.M/u]]rα[ψ̄](projiR) = Mi : αi if [[Ψ̂.M/u]]rα[ψ̄](R) = (M1,M2) : α1 × α2

[[Ψ̂.M/u]]rα[ψ̄](R) fails otherwise

A.2.2 Contextual substitution for parameter variables

Contextual substitution for parameter variables follows similar principles, but sub-

stitutes an ordinary variable for a parameter variable. We write parameter substi-

tutions as [[x/p]]∗α[ψ̄] where ∗ ∈ {n, r, s, a}. When we encounter a parameter variable

p[σ], we replace p with the ordinary variable x and apply the substitution [[x/p]]sα[ψ̄]

to σ obtaining a substitution σ′. Instead of returning a closure x[σ′] as the final

result we apply σ′ to the ordinary variable x. This may again yield a normal term,

so we must ensure that contextual substitution for parameter variables preserves

normal forms.

[[x/p]]rα[ψ̄](p[σ]) = M : α if [[x/p]]sα[ψ̄]σ = σ′ and [σ′/ψ̄]r
ψ̄
x = M : α

[[x/p]]rα[ψ̄](p[σ]) = R if [[x/p]]sα[ψ̄]σ = σ′ and [σ′/ψ̄]r
ψ̄
x = R

[[x/p]]rα[ψ̄](p
′[σ]) = p′[σ′] where [[x/p]]sα[ψ̄]σ = σ′

Theorem A.5 (Termination)

[[Ψ̂.M/u]]∗α[φ̄]() and [[Ψ̂.x/p]]∗α[φ̄]() where ∗ = {n, r, s, a} terminate, either by return-

ing a result or failing after a finite number of steps.

Theorem A.6 (Contextual Substitution Principles)

(i) If ∆1; Φ ⊢M ⇐ A and ∆1, u::A[Φ],∆2; Ψ ⊢ J

then ∆1, [[Ψ̂.M/u]]∗α[φ̄]∆2; [[Ψ̂.M/u]]∗α[φ̄]Ψ ⊢ [[Ψ̂.M/u]]∗α[φ̄]J where ∗ = {n, r, s, a}.

(ii) If ∆1; Φ ⊢ x⇒ A and ∆1, p::A[Φ],∆2; Ψ ⊢ J

then ∆1, [[Ψ̂.x/p]]
∗
α[φ̄]∆2; [[Ψ̂.x/p]]

∗
α[φ̄]Ψ ⊢ [[Ψ̂.x/p]]∗α[φ̄]J where ∗ = {n, r, s, a}.

20

	Introduction
	Motivation
	Basic idea of coverage on open data

	Background
	Data-level typing
	Context schemas

	Coverage checking
	Overview of coverage judgments
	covered-by: the leaves of a coverage derivation
	Rules deriving Obj(A) J
	PVars"426830A : F"526930B > P J: Parameter variables
	MVars(P) J: General case for all ground instances of P
	Coverage soundness

	Conclusion
	References
	Appendix: Substitutions
	Ordinary substitution
	Substitution operations

