
Introduction Beluga:Design and implementation

Mechanizing Meta-Theory in Beluga

Brigitte Pientka

School of Computer Science
McGill University
Montreal, Canada

Joint work with Andrew Cave

B. Pientka Mechanizing Meta-Theory in Beluga 1 / 55

Introduction Beluga:Design and implementation

How to mechanize formal systems and proofs?

• Formal systems (given via axioms and inference rules) play an important
role when designing languages and more generally software.

• Proofs (that a given property is satisfied) are an integral part of the
software (see: certified code, proof-carrying architectures).

Program
(in Assembler,

C, ML, Java, ...)

Properties

– Memory Safety:
Program does not crash

– Authenticity:
Communicates only within domain mcgill.ca

– Type Safety:
Execution of program does not go wrong

Meta-Theory

B. Pientka Mechanizing Meta-Theory in Beluga 2 / 55

Introduction Beluga:Design and implementation

How to mechanize formal systems and proofs?

• Formal systems (given via axioms and inference rules) play an important
role when designing languages and more generally software.

• Proofs (that a given property is satisfied) are an integral part of the
software (see: certified code, proof-carrying architectures).

Program
(in Assembler,

C, ML, Java, ...)

Properties

– Memory Safety:
Program does not crash

– Authenticity:
Communicates only within domain mcgill.ca

– Type Safety:
Execution of program does not go wrong

Meta-Theory

B. Pientka Mechanizing Meta-Theory in Beluga 2 / 55

Introduction Beluga:Design and implementation

Proofs: The tip of the iceberg

“We may think of [the] proof as an iceberg. In the top of it, we find what
we usually consider the real proof; underwater, the most of the matter,
consisting of all mathematical preliminaries a reader must know in order to
understand what is going on.” S. Berardi [1990]

B. Pientka Mechanizing Meta-Theory in Beluga 3 / 55

Introduction Beluga:Design and implementation

Proofs: The tip of the iceberg

Main Proof

Eigenvariables

Hypothesis Variables
Context

Renaming

Derivation TreeSubstitution

Scope Binding

“We may think of [the] proof as an iceberg. In the top of it, we find what
we usually consider the real proof; underwater, the most of the matter,
consisting of all mathematical preliminaries a reader must know in order to
understand what is going on.” S. Berardi [1990]

B. Pientka Mechanizing Meta-Theory in Beluga 4 / 55

Introduction Beluga:Design and implementation

Beluga: Programming Proofs in Context

“The motivation behind the work in very-high-level languages is to ease the
programming task by providing the programmer with a language containing
primitives or abstractions suitable to his problem area. The programmer is
then able to spend his effort in the right place; he concentrates on solving
his problem, and the resulting program will be more reliable as a result.
Clearly, this is a worthwhile goal.” B. Liskov [1974]

B. Pientka Mechanizing Meta-Theory in Beluga 5 / 55

Introduction Beluga:Design and implementation

Beluga: Programming Proofs in Context

“The motivation behind the work in very-high-level languages is to ease the
programming task by providing the programmer with a language containing
primitives or abstractions suitable to his problem area. The programmer is
then able to spend his effort in the right place; he concentrates on solving
his problem, and the resulting program will be more reliable as a result.
Clearly, this is a worthwhile goal.” B. Liskov [1974]

B. Pientka Mechanizing Meta-Theory in Beluga 5 / 55

Introduction Beluga:Design and implementation

Above and Below the Surface

Beluga: Dependently typed Programming and Proof Environment

Main Proof

Eigenvariables

Hypothesis
Context

Variables

Renaming

Derivation TreeSubstitution

Scope Binding

Contextual LF

Functional
Programmming
with Indexed Types

• Below the surface: Support for key concepts based on Contextual LF

• Above the surface: Proofs by structural Induction = Recursive Programs
First-order Logic over Contextual LF objects (i.e. Contexts, Derivation trees,

Substitutions, . . .) together with inductive definitions and induction principles

B. Pientka Mechanizing Meta-Theory in Beluga 6 / 55

Introduction Beluga:Design and implementation

This Talk

Design and implementation of Beluga

• Introduction
• Basics - Intermediate: Mechanizing Languages and Proofs

- Type Preservation
- Uniqueness of Evaluation
- Type Uniqueness
- Translating between Lambda-terms to de Bruijn terms

• Advanced: Proofs using logical relations
• Conclusion and curent work

“The limits of my language mean the limits of my world.”
- L. Wittgenstein

B. Pientka Mechanizing Meta-Theory in Beluga 7 / 55

Introduction Beluga:Design and implementation

Simply Typed Lambda-calculus (Gentzen-style)

Types A,B::= i Terms M, N ::= x | app M N
| A⇒ B | lam x :A.M

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

M −→ M ′

app M N −→ app M ′ N
E-App1

N −→ N ′ V value

app V N −→ app V N ′ E-App2

V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

Typing Judgment: M : A read as “M has type A” (Gentzen-style)

x : A
u

...
M : B

lam x :A.M : A⇒ B
T-Absx,u

M : A⇒ B N : A
app M N : B

T-App

B. Pientka Mechanizing Meta-Theory in Beluga 8 / 55

Introduction Beluga:Design and implementation

Simply Typed Lambda-calculus (Gentzen-style)

Types A,B::= i Terms M, N ::= x | app M N
| A⇒ B | lam x :A.M

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

M −→ M ′

app M N −→ app M ′ N
E-App1

N −→ N ′ V value

app V N −→ app V N ′ E-App2

V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

Typing Judgment: M : A read as “M has type A” (Gentzen-style)

x : A
u

...
M : B

lam x :A.M : A⇒ B
T-Absx,u

M : A⇒ B N : A
app M N : B

T-App

B. Pientka Mechanizing Meta-Theory in Beluga 8 / 55

Introduction Beluga:Design and implementation

Simply Typed Lambda-calculus with Contexts

Types and Terms

Types A,B::= i Terms M, N ::= x | c
| A⇒ B | lam x :A.M

| app M N

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

M −→ M ′

app M N −→ app M ′ N
E-App1

N −→ N ′ V value

app V N −→ app V N ′ E-App2

V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

Typing Judgment: Γ ` M : A read as “M has type A in context Γ”

x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x :A.M : A⇒ B
T-Absx

Γ `M : A⇒ B Γ `N A
Γ `app M N : B

T-App

Context Γ ::= · | Γ, x : A We are introducing the variable x together with
the assumption x : A

B. Pientka Mechanizing Meta-Theory in Beluga 9 / 55

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x :A.M : A⇒ B
T-Absx

Γ `M : A⇒ B Γ `N : B
Γ `app M N : B

T-App

Evaluation rules V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

• What kinds of variables are used? Bound variables, Eigenvariables,
Schematic variables, Context variables

• What operations on variables are needed? Substitution and Renaming for
bound variable, Substitution for schematic variables, Substitution for
hypothesis and eigenvariables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues.

B. Pientka Mechanizing Meta-Theory in Beluga 10 / 55

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x :A.M : A⇒ B
T-Absx

Γ `M : A⇒ B Γ `N : B
Γ `app M N : B

T-App

Evaluation rules V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

• What kinds of variables are used?

Bound variables, Eigenvariables,
Schematic variables, Context variables

• What operations on variables are needed? Substitution and Renaming for
bound variable, Substitution for schematic variables, Substitution for
hypothesis and eigenvariables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues.

B. Pientka Mechanizing Meta-Theory in Beluga 10 / 55

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x :A.M : A⇒ B
T-Absx

Γ `M : A⇒ B Γ `N : B
Γ `app M N : B

T-App

Evaluation rules V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

• What kinds of variables are used? Bound variables, Eigenvariables,
Schematic variables, Context variables

• What operations on variables are needed? Substitution and Renaming for
bound variable, Substitution for schematic variables, Substitution for
hypothesis and eigenvariables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues.

B. Pientka Mechanizing Meta-Theory in Beluga 10 / 55

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x :A.M : A⇒ B
T-Absx

Γ `M : A⇒ B Γ `N : B
Γ `app M N : B

T-App

Evaluation rules V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

• What kinds of variables are used? Bound variables, Eigenvariables,
Schematic variables, Context variables

• What operations on variables are needed?

Substitution and Renaming for
bound variable, Substitution for schematic variables, Substitution for
hypothesis and eigenvariables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues.

B. Pientka Mechanizing Meta-Theory in Beluga 10 / 55

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x :A.M : A⇒ B
T-Absx

Γ `M : A⇒ B Γ `N : B
Γ `app M N : B

T-App

Evaluation rules V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

• What kinds of variables are used? Bound variables, Eigenvariables,
Schematic variables, Context variables

• What operations on variables are needed? Substitution and Renaming for
bound variable, Substitution for schematic variables, Substitution for
hypothesis and eigenvariables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues.

B. Pientka Mechanizing Meta-Theory in Beluga 10 / 55

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x :A.M : A⇒ B
T-Absx

Γ `M : A⇒ B Γ `N : B
Γ `app M N : B

T-App

Evaluation rules V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

• What kinds of variables are used? Bound variables, Eigenvariables,
Schematic variables, Context variables

• What operations on variables are needed? Substitution and Renaming for
bound variable, Substitution for schematic variables, Substitution for
hypothesis and eigenvariables

• How should we represent contexts? What properties do contexts have?

(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues.

B. Pientka Mechanizing Meta-Theory in Beluga 10 / 55

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x :A.M : A⇒ B
T-Absx

Γ `M : A⇒ B Γ `N : B
Γ `app M N : B

T-App

Evaluation rules V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

• What kinds of variables are used? Bound variables, Eigenvariables,
Schematic variables, Context variables

• What operations on variables are needed? Substitution and Renaming for
bound variable, Substitution for schematic variables, Substitution for
hypothesis and eigenvariables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues.

B. Pientka Mechanizing Meta-Theory in Beluga 10 / 55

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x :A.M : A⇒ B
T-Absx

Γ `M : A⇒ B Γ `N : B
Γ `app M N : B

T-App

Evaluation rules V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

• What kinds of variables are used? Bound variables, Eigenvariables,
Schematic variables, Context variables

• What operations on variables are needed? Substitution and Renaming for
bound variable, Substitution for schematic variables, Substitution for
hypothesis and eigenvariables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues.

B. Pientka Mechanizing Meta-Theory in Beluga 10 / 55

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x :A.M : A⇒ B
T-Absx

Γ `M : A⇒ B Γ `N : B
Γ `app M N : B

TApp

Evaluation rules V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

In Belugaµ: Model formal systems and derivation trees in the contextual
logical framework LF

• Compact representation of formal systems and derivations

• Higher-order abstract syntax trees and dependent types

 support for α-renaming, substitution,

adequate representations

 LF [HHP’93]

• Well-scoped derivation trees

• First-class contexts and substitutions

+ equational theory about substitutions

 Contextual LF [TOCL08,POPL08,
PPDP08,LFMTP13]

B. Pientka Mechanizing Meta-Theory in Beluga 11 / 55

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x :A.M : A⇒ B
T-Absx

Γ `M : A⇒ B Γ `N : B
Γ `app M N : B

TApp

Evaluation rules V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

In Belugaµ: Model formal systems and derivation trees in the contextual
logical framework LF

• Compact representation of formal systems and derivations

• Higher-order abstract syntax trees and dependent types

 support for α-renaming, substitution,

adequate representations

 LF [HHP’93]

• Well-scoped derivation trees

• First-class contexts and substitutions

+ equational theory about substitutions

 Contextual LF [TOCL08,POPL08,
PPDP08,LFMTP13]

B. Pientka Mechanizing Meta-Theory in Beluga 11 / 55

Introduction Beluga:Design and implementation

Step 1: Representing Types and Terms in LF

Types A,B ::= nat | A⇒ B Terms M ::= x | lam x :A.M | app M N

LF representation in Beluga

LF tp: type =
| nat: tp
| arr: tp → tp → tp;

LF tm: type =
| lam: tp → (tm → tm) → tm
| app: tm → tm → tm;

Examples: lam x :nat.x (Identity),
lam x :nat. lam x :nat⇒ nat).x ,

lam f :nat⇒ nat. lam g :nat⇒ nat. lam x :nat. app f (app g x)

lam nat (λx.x)
lam nat (λx. lam (arr nat nat) (λx.x))
lam (arr nat nat) (λf. lam (arr nat nat) (λg. lam nat (λx. app f (app g x))))

• Binding in the object language are modelled using LF functions.

• Inherit α-renaming and single substitutions

B. Pientka Mechanizing Meta-Theory in Beluga 12 / 55

Introduction Beluga:Design and implementation

Step 1: Representing Types and Terms in LF

Types A,B ::= nat | A⇒ B Terms M ::= x | lam x :A.M | app M N

LF representation in Beluga

LF tp: type =
| nat: tp
| arr: tp → tp → tp;

LF tm: type =
| lam: tp → (tm → tm) → tm
| app: tm → tm → tm;

Examples: lam x :nat.x (Identity),
lam x :nat. lam x :nat⇒ nat).x ,

lam f :nat⇒ nat. lam g :nat⇒ nat. lam x :nat. app f (app g x)

lam nat (λx.x)
lam nat (λx. lam (arr nat nat) (λx.x))
lam (arr nat nat) (λf. lam (arr nat nat) (λg. lam nat (λx. app f (app g x))))

• Binding in the object language are modelled using LF functions.

• Inherit α-renaming and single substitutions

B. Pientka Mechanizing Meta-Theory in Beluga 12 / 55

Introduction Beluga:Design and implementation

Step 1: Representing Types and Terms in LF

Types A,B ::= nat | A⇒ B Terms M ::= x | lam x :A.M | app M N

LF representation in Beluga

LF tp: type =
| nat: tp
| arr: tp → tp → tp;

LF tm: type =
| lam: tp → (tm → tm) → tm
| app: tm → tm → tm;

Examples: lam x :nat.x (Identity),
lam x :nat. lam x :nat⇒ nat).x ,

lam f :nat⇒ nat. lam g :nat⇒ nat. lam x :nat. app f (app g x)

lam nat (λx.x)
lam nat (λx. lam (arr nat nat) (λx.x))
lam (arr nat nat) (λf. lam (arr nat nat) (λg. lam nat (λx. app f (app g x))))

• Binding in the object language are modelled using LF functions.

• Inherit α-renaming and single substitutions

B. Pientka Mechanizing Meta-Theory in Beluga 12 / 55

Introduction Beluga:Design and implementation

Step 2a: Representation of Semantics in LF

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

M −→ M ′

app M N −→ app M ′ N
E-App1

N −→ N ′ V value

app V N −→ app V N ′ E-App2

V value
app (lamx .M) V −→ [V /x]M

E-App-Abs

• Judgments are represented as type families

• Rules are represented as (dependent) types

• Substitution on terms is represented as application in LF

LF representation in Beluga

LF step: term → term → type =
| e_app_1 : step M1 M1’

→ step (app M1 M2) (app M1’ M2)
| e_app_2 : step M2 M2’ → value M1

→ step (app M1 M2) (app M1 M2’)
| e_app_abs : value M2

→ step (app (lam M) M2) (M M2) ;

B. Pientka Mechanizing Meta-Theory in Beluga 13 / 55

Introduction Beluga:Design and implementation

Step 2a: Representation of Semantics in LF

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

M −→ M ′

app M N −→ app M ′ N
E-App1

N −→ N ′ V value

app V N −→ app V N ′ E-App2

V value
app (lamx .M) V −→ [V /x]M

E-App-Abs

• Judgments are represented as type families

• Rules are represented as (dependent) types

• Substitution on terms is represented as application in LF

LF representation in Beluga

LF step: term → term → type =
| e_app_1 : step M1 M1’

→ step (app M1 M2) (app M1’ M2)
| e_app_2 : step M2 M2’ → value M1

→ step (app M1 M2) (app M1 M2’)
| e_app_abs : value M2

→ step (app (lam M) M2) (M M2) ;

B. Pientka Mechanizing Meta-Theory in Beluga 13 / 55

Introduction Beluga:Design and implementation

Step 2b: Representation of Typing in LF

Typing Rules

M : A⇒ B N : A
app M N : B

T-App

x : A
u

...
M : B

lam x :A.M : A⇒ B
T-Absx,u

LF hastype: tm → tp → type =
| t_app: hastype M (arr A B)

→ hastype N A
→ hastype (app M N) B

| t_abs: (Π x:tm.hastype x A → hastype (M x) B)
→ hastype (lam A M) (arr A B);

• Hypothetical derivations are represented as LF functions (simple type)

• Parametric derivations are represented as LF functions (dependent type)

x : nat
u

D
(lam y :nat.y) : (nat⇒ nat)

(lam x :nat.lam y :nat.y) : (nat⇒ nat⇒ nat)
t lamx,u

is represented as [` t_abs x.u.D[x,u]]

B. Pientka Mechanizing Meta-Theory in Beluga 14 / 55

Introduction Beluga:Design and implementation

Step 2b: Representation of Typing in LF

Typing Rules

M : A⇒ B N : A
app M N : B

T-App

x : A
u

...
M : B

lam x :A.M : A⇒ B
T-Absx,u

LF hastype: tm → tp → type =
| t_app: hastype M (arr A B)

→ hastype N A
→ hastype (app M N) B

| t_abs: (Π x:tm.hastype x A → hastype (M x) B)
→ hastype (lam A M) (arr A B);

• Hypothetical derivations are represented as LF functions (simple type)

• Parametric derivations are represented as LF functions (dependent type)

x : nat
u

D
(lam y :nat.y) : (nat⇒ nat)

(lam x :nat.lam y :nat.y) : (nat⇒ nat⇒ nat)
t lamx,u

is represented as [` t_abs x.u.D]

B. Pientka Mechanizing Meta-Theory in Beluga 14 / 55

Introduction Beluga:Design and implementation

Step 2b: Representation of Typing in LF

Typing Rules

M : A⇒ B N : A
app M N : B

T-App

x : A
u

...
M : B

lam x :A.M : A⇒ B
T-Absx,u

LF hastype: tm → tp → type =
| t_app: hastype M (arr A B)

→ hastype N A
→ hastype (app M N) B

| t_abs: (Π x:tm.hastype x A → hastype (M x) B)
→ hastype (lam A M) (arr A B);

• Hypothetical derivations are represented as LF functions (simple type)

• Parametric derivations are represented as LF functions (dependent type)

x : nat
u

D
(lam y :nat.y) : (nat⇒ nat)

(lam x :nat.lam y :nat.y) : (nat⇒ nat⇒ nat)
t lamx,u

is represented as [` t_abs x.u.D[x,u]]

B. Pientka Mechanizing Meta-Theory in Beluga 14 / 55

Introduction Beluga:Design and implementation

Proofs by Induction: Type Preservation

Theorem

If D :: ` M : B and S :: M −→ N then ` N : B.

Proof.

By structural induction on the derivation S :: M −→ N.

Case: S =

V
V value

E-App-Abs
app (lam x :A.M) V −→ [V /x]M

D :: ` app (lam x :A.M) V : B by assumption
D1 :: ` lam x :A.M : A⇒ B and D2 :: ` V : A by inversion using rule T-App

D′ :: x : A ` M : B by inversion on D1 using rule T-Abs

:: ` [V /x]M : B by substitution lemma using V and D2 in D.

B. Pientka Mechanizing Meta-Theory in Beluga 15 / 55

Introduction Beluga:Design and implementation

Belugaµ: Proofs as Programs

Functional programming with indexed types [POPL’08,POPL’12]

Proof term language for first-order logic over a specifc domain (= contextual LF)
together inductive definitions (= relations) about domain objects and
domain-specific induction principle [TLCA’15]

On paper proof Proofs as functions in Beluga

Theorem Type

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

Beluga programs manipulate directly derivation trees and contexts

B. Pientka Mechanizing Meta-Theory in Beluga 16 / 55

Introduction Beluga:Design and implementation

Belugaµ: Proofs as Programs

Functional programming with indexed types [POPL’08,POPL’12]

Proof term language for first-order logic over a specifc domain (= contextual LF)
together inductive definitions (= relations) about domain objects and
domain-specific induction principle [TLCA’15]

On paper proof Proofs as functions in Beluga

Theorem Type

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

Beluga programs manipulate directly derivation trees and contexts

B. Pientka Mechanizing Meta-Theory in Beluga 16 / 55

Introduction Beluga:Design and implementation

Type preservation: Theorems as Types

Theorem

If D :: ` M : B and S :: M −→ N then ` N : B.

is translate to

Computation-level Type in Beluga

[` hastype M B] → [` step M N] → [` hastype N B]

Remark:

• [` hastype M B] is a contextual type. It stands for a closed typing
derivation hastype M B.

• M, N, and B are implicitly quantified at the outside. Beluga infers the
type of these free variables.

B. Pientka Mechanizing Meta-Theory in Beluga 17 / 55

Introduction Beluga:Design and implementation

Type preservation: Proofs are Programs

Theorem: If D :: ` M : B and S :: M −→ N then ` N : B.
By structural induction on the derivation S :: M −→ N.

Case: S =

V
V value

E-App-Abs
app (lam x :A.M) V −→ [V /x]M

D :: ` app (lam x :A.M) V : B by assumption
D1 :: ` lam x :A.M : A⇒ B and D2 :: ` V : A by inversion using rule T-App
D′ :: x : A ` M : B by inversion on D1 using rule T-Abs

:: ` [V /x]M : B by substitution lemma using V and D2 in D.

Computation in Beluga

rec tps: [` hastype M T] → [` step M N] → [` hastype N T] =
/ total s (tps m t n d s)/
fn d ⇒ fn s ⇒ case s of
| [` e_app_1 S1] ⇒ ?

| [` e_app_2 S2 _] ⇒ ?

| [` e_app_abs V] ⇒
let [` t_app (t_abs λx.λu. D’) D2] = d in

[` D’[_, D2]]
; B. Pientka Mechanizing Meta-Theory in Beluga 18 / 55

Introduction Beluga:Design and implementation

Type preservation - Full Proof

rec tps: [` hastype M T] → [` step M N] → [` hastype N T] =
/ total s (tps m t n d s)/
fn d ⇒ fn s ⇒ case s of
| [` e_app_1 S1] ⇒

let [` t_app D1 D2] = d in
let [` F1] = tps [` D1] [` S1] in

[` t_app F1 D2]

| [` e_app_2 S2 _] ⇒
let [` t_app D1 D2] = d in
let [` F2] = tps [` D2] [` S2] in

[` t_app D1 F2]

| [` e_app_abs V] ⇒
let [` t_app (t_abs λx.λu. D) D2] = d in

[` D[_, D2]]
;

• Totality declaration states what argument is decreasing

• We check that all cases are covered and all recursive calls are on
smaller arguments

• Appealing to the IH corresponds to the recursive call

B. Pientka Mechanizing Meta-Theory in Beluga 19 / 55

Introduction Beluga:Design and implementation

Lessons Learned

• How to specify formal systems.

- Binders in the object language are modelled using LF functions
- Hypothetical and parametric derivations are modelled using LF

functions

- Equality
- Falsehood

• How to write proofs as recursive functions using pattern matching

1. Proofs by induction on closed derivation trees

2. Proofs by induction involving falsehood

B. Pientka Mechanizing Meta-Theory in Beluga 20 / 55

Introduction Beluga:Design and implementation

Lessons Learned

• How to specify formal systems.

- Binders in the object language are modelled using LF functions
- Hypothetical and parametric derivations are modelled using LF

functions
- Equality
- Falsehood

• How to write proofs as recursive functions using pattern matching

1. Proofs by induction on closed derivation trees
2. Proofs by induction involving falsehood

B. Pientka Mechanizing Meta-Theory in Beluga 20 / 55

Introduction Beluga:Design and implementation

Uniqueness of Evaluation

M −→ M ′

app M N −→ app M ′ N
E-App1

N −→ N ′ V value

app V N −→ app V N ′ E-App2

V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

Theorem

If S1 :: M −→ N1 and M −→ N2 then N1 = N2.

By structural induction on S1 :: M −→ N1.

Case S1 =
W value

E-App-Abs
app (lam x .M) W −→ [W /x]M

Sub-Case 2: S2 =

S
lam x .M −→ M ′

E-App1
app (lam x .M) N −→ M ′ N

lam x .M value by definition

⊥ since there is no derivation for S (Lemma)

B. Pientka Mechanizing Meta-Theory in Beluga 21 / 55

Introduction Beluga:Design and implementation

Uniqueness of Evaluation

M −→ M ′

app M N −→ app M ′ N
E-App1

N −→ N ′ V value

app V N −→ app V N ′ E-App2

V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

Theorem

If S1 :: M −→ N1 and M −→ N2 then N1 = N2.

By structural induction on S1 :: M −→ N1.

Case S1 =
W value

E-App-Abs
app (lam x .M) W −→ [W /x]M

Sub-Case 2: S2 =

S
lam x .M −→ M ′

E-App1
app (lam x .M) N −→ M ′ N

lam x .M value by definition

⊥ since there is no derivation for S (Lemma)

B. Pientka Mechanizing Meta-Theory in Beluga 21 / 55

Introduction Beluga:Design and implementation

Uniqueness of Evaluation

M −→ M ′

app M N −→ app M ′ N
E-App1

N −→ N ′ V value

app V N −→ app V N ′ E-App2

V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

Theorem

If S1 :: M −→ N1 and M −→ N2 then N1 = N2.

By structural induction on S1 :: M −→ N1.

Case S1 =
W value

E-App-Abs
app (lam x .M) W −→ [W /x]M

Sub-Case 1: S2 =
W value

E-App-Abs
app (lam x .M) W −→ [W /x]M

[W /x]M = [W /x]M by reflexivity

B. Pientka Mechanizing Meta-Theory in Beluga 21 / 55

Introduction Beluga:Design and implementation

Uniqueness of Evaluation

M −→ M ′

app M N −→ app M ′ N
E-App1

N −→ N ′ V value

app V N −→ app V N ′ E-App2

V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

Theorem

If S1 :: M −→ N1 and M −→ N2 then N1 = N2.

By structural induction on S1 :: M −→ N1.

Case S1 =
W value

E-App-Abs
app (lam x .M) W −→ [W /x]M

Sub-Case 2: S2 =

S
lam x .M −→ M ′

E-App1
app (lam x .M) N −→ M ′ N

lam x .M value by definition

⊥ since there is no derivation for S (Lemma)

B. Pientka Mechanizing Meta-Theory in Beluga 21 / 55

Introduction Beluga:Design and implementation

Uniqueness of Evaluation

M −→ M ′

app M N −→ app M ′ N
E-App1

N −→ N ′ V value

app V N −→ app V N ′ E-App2

V value
app (lamx :A.M) V −→ [V /x]M

E-App-Abs

Theorem

If S1 :: M −→ N1 and M −→ N2 then N1 = N2.

By structural induction on S1 :: M −→ N1.

Case S1 =
W value

E-App-Abs
app (lam x .M) W −→ [W /x]M

Sub-Case 3: S2 =

S
W −→ N ′ (lam x .M) value

E-App2
app (lam x .M) W −→ app (lam x .M) N ′

⊥ since W value there is no derivation for S (Lemma)

Lemma

If M −→ M ′ and M value then ⊥.
B. Pientka Mechanizing Meta-Theory in Beluga 22 / 55

Introduction Beluga:Design and implementation

Step 1: Encoding Equality and Bottom

Equality (not built-in in Beluga)

LF representation in Beluga

LF equal : term → term → type =
| refl: equal M M;

Alternative: Define it structurally.

Bottom (Falsehood) (not built-in in Beluga)

LF representation in Beluga

not_possible : type.

Define an empty type with no constructors.

B. Pientka Mechanizing Meta-Theory in Beluga 23 / 55

Introduction Beluga:Design and implementation

Step 2a: Encoding “Values don’t step”

Lemma

If M −→ M ′ and M value then ⊥.

rec values_dont_step: [` step M M’] → [` value M] → [` not_possible]=
/ total v (values_dont_step m m’ s v)/
fn s ⇒ fn v ⇒ case v of
| [` v_lam] ⇒ impossible s;

• impossible s is syntactic sugar for case s of {} , i.e. a case-expression
with no branches.

• Corresponds to having derived ⊥ in the on-paper proof

B. Pientka Mechanizing Meta-Theory in Beluga 24 / 55

Introduction Beluga:Design and implementation

Step 2b: Encoding Uniqueness of Values

Theorem

If S1 :: M −→ N1 and M −→ N2 then N1 = N2.

rec unique : [` step M N1] → [` step M N2] → [` equal N1 N2] =
/ total s1 (unique m m1 m2 s1)/
fn s1 ⇒ fn s2 ⇒ case s1 of
| [` e_app_1 S] ⇒ ?
| [` e_app_2 S V] ⇒ ?
| [` e_app_abs V] ⇒ case s2 of

| [` e_app_abs _] ⇒ [` refl]
| [` e_app_1 S] ⇒ impossible values_dont_step [` S] [` v_lam]
| [` e_app_2 S _] ⇒ impossible values_dont_step [` S] [` V]

;

B. Pientka Mechanizing Meta-Theory in Beluga 25 / 55

Introduction Beluga:Design and implementation

Lessons Learned

• How to specify formal systems.

- Binders in the object language are modelled using LF functions
- Hypothetical and parametric derivations are modelled using LF

functions
- Encoding equality
- Encoding falsehood

• How to write proofs as recursive functions using pattern matching

1. Proofs by induction on closed derivation trees
2. Proofs using falsehood

3. Proofs by induction on open derivation tress

B. Pientka Mechanizing Meta-Theory in Beluga 26 / 55

Introduction Beluga:Design and implementation

Lessons Learned

• How to specify formal systems.

- Binders in the object language are modelled using LF functions
- Hypothetical and parametric derivations are modelled using LF

functions
- Encoding equality
- Encoding falsehood

• How to write proofs as recursive functions using pattern matching

1. Proofs by induction on closed derivation trees
2. Proofs using falsehood
3. Proofs by induction on open derivation tress

B. Pientka Mechanizing Meta-Theory in Beluga 26 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

Theorem

If D : Γ `M : A and C : Γ `M : B then E : eq A B.

Induction on first typing derivation D.

Case 1

D =

D1

Γ, x :A `M : B
T-Absx

Γ `lam x :A.M : A⇒ B
C =

C1

Γ, x :A `M : B ′

T-Absx

Γ `lam x :A.M : A⇒ B ′

E : eq B B ′ by i.h. using D1 and C1

E : eq B B and B = B ′ by inversion using reflexivity

Therefore there is a proof for eq (A⇒ B) (A⇒ B ′) by reflexivity.

Case 2

D =
x :A ∈ Γ

Γ ` x : A
C =

x :B ∈ Γ

Γ ` x : B

Every variable x is associated with a unique typing assumption (property of the

context), hence A = B.

B. Pientka Mechanizing Meta-Theory in Beluga 27 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

Theorem

If D : Γ `M : A and C : Γ `M : B then E : eq A B.

Induction on first typing derivation D.

Case 1

D =

D1

Γ, x :A `M : B
T-Absx

Γ `lam x :A.M : A⇒ B
C =

C1

Γ, x :A `M : B ′

T-Absx

Γ `lam x :A.M : A⇒ B ′

E : eq B B ′ by i.h. using D1 and C1

E : eq B B and B = B ′ by inversion using reflexivity

Therefore there is a proof for eq (A⇒ B) (A⇒ B ′) by reflexivity.

Case 2

D =
x :A ∈ Γ

Γ ` x : A
C =

x :B ∈ Γ

Γ ` x : B

Every variable x is associated with a unique typing assumption (property of the

context), hence A = B.

B. Pientka Mechanizing Meta-Theory in Beluga 27 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

Theorem

If D : Γ `M : A and C : Γ `M : B then E : eq A B.

Induction on first typing derivation D.

Case 1

D =

D1

Γ, x :A `M : B
T-Absx

Γ `lam x :A.M : A⇒ B
C =

C1

Γ, x :A `M : B ′

T-Absx

Γ `lam x :A.M : A⇒ B ′

E : eq B B ′ by i.h. using D1 and C1

E : eq B B and B = B ′ by inversion using reflexivity

Therefore there is a proof for eq (A⇒ B) (A⇒ B ′) by reflexivity.

Case 2

D =
x :A ∈ Γ

Γ ` x : A
C =

x :B ∈ Γ

Γ ` x : B

Every variable x is associated with a unique typing assumption (property of the

context), hence A = B.

B. Pientka Mechanizing Meta-Theory in Beluga 27 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

Theorem

If D : Γ `M : A and C : Γ `M : B then E : eq A B.

Induction on first typing derivation D.

Case 1

D =

D1

Γ, x :A `M : B
T-Absx

Γ `lam x :A.M : A⇒ B
C =

C1

Γ, x :A `M : B ′

T-Absx

Γ `lam x :A.M : A⇒ B ′

E : eq B B ′ by i.h. using D1 and C1

E : eq B B and B = B ′ by inversion using reflexivity

Therefore there is a proof for eq (A⇒ B) (A⇒ B ′) by reflexivity.

Case 2

D =
x :A ∈ Γ

Γ ` x : A
C =

x :B ∈ Γ

Γ ` x : B

Every variable x is associated with a unique typing assumption (property of the

context), hence A = B.

B. Pientka Mechanizing Meta-Theory in Beluga 27 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

Theorem

If D : Γ `M : A and C : Γ `M : B then E : eq A B.

Induction on first typing derivation D.

Case 1

D =

D1

Γ, x :A `M : B
T-Absx

Γ `lam x :A.M : A⇒ B
C =

C1

Γ, x :A `M : B ′

T-Absx

Γ `lam x :A.M : A⇒ B ′

E : eq B B ′ by i.h. using D1 and C1

E : eq B B and B = B ′ by inversion using reflexivity

Therefore there is a proof for eq (A⇒ B) (A⇒ B ′) by reflexivity.

Case 2

D =
x :A ∈ Γ

Γ ` x : A
C =

x :B ∈ Γ

Γ ` x : B

Every variable x is associated with a unique typing assumption (property of the

context), hence A = B.

B. Pientka Mechanizing Meta-Theory in Beluga 27 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

Theorem

If D : Γ `M : A and C : Γ `M : B then E : eq A B.

Induction on first typing derivation D.

Case 1

D =

D1

Γ, x :A `M : B
T-Absx

Γ `lam x :A.M : A⇒ B
C =

C1

Γ, x :A `M : B ′

T-Absx

Γ `lam x :A.M : A⇒ B ′

E : eq B B ′ by i.h. using D1 and C1

E : eq B B and B = B ′ by inversion using reflexivity

Therefore there is a proof for eq (A⇒ B) (A⇒ B ′) by reflexivity.

Case 2

D =
x :A ∈ Γ

Γ ` x : A

C =
x :B ∈ Γ

Γ ` x : B

Every variable x is associated with a unique typing assumption (property of the

context), hence A = B.

B. Pientka Mechanizing Meta-Theory in Beluga 27 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

Theorem

If D : Γ `M : A and C : Γ `M : B then E : eq A B.

Induction on first typing derivation D.

Case 1

D =

D1

Γ, x :A `M : B
T-Absx

Γ `lam x :A.M : A⇒ B
C =

C1

Γ, x :A `M : B ′

T-Absx

Γ `lam x :A.M : A⇒ B ′

E : eq B B ′ by i.h. using D1 and C1

E : eq B B and B = B ′ by inversion using reflexivity

Therefore there is a proof for eq (A⇒ B) (A⇒ B ′) by reflexivity.

Case 2

D =
x :A ∈ Γ

Γ ` x : A
C =

x :B ∈ Γ

Γ ` x : B

Every variable x is associated with a unique typing assumption (property of the

context), hence A = B.

B. Pientka Mechanizing Meta-Theory in Beluga 27 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

Theorem

If D : Γ `M : A and C : Γ `M : B then E : eq A B.

Induction on first typing derivation D.

Case 1

D =

D1

Γ, x :A `M : B
T-Absx

Γ `lam x :A.M : A⇒ B
C =

C1

Γ, x :A `M : B ′

T-Absx

Γ `lam x :A.M : A⇒ B ′

E : eq B B ′ by i.h. using D1 and C1

E : eq B B and B = B ′ by inversion using reflexivity

Therefore there is a proof for eq (A⇒ B) (A⇒ B ′) by reflexivity.

Case 2

D =
x :A ∈ Γ

Γ ` x : A
C =

x :B ∈ Γ

Γ ` x : B

Every variable x is associated with a unique typing assumption (property of the

context), hence A = B.

B. Pientka Mechanizing Meta-Theory in Beluga 27 / 55

Introduction Beluga:Design and implementation

Step 2a: Theorem as Type

Theorem

If D : Γ `M : A and C : Γ `M : B then E : eq A B.

is represented as

Computation-level Type in Beluga

{γ:ctx}[γ ` hastype M A[]] → [γ ` hastype M B[]] → [` eq A B]

• Parameterize computation over contexts, Distinguish between contexts.

• Contexts are classified by context schemas
schema ctx = some [t:tp] block x:term, u:hastype x T;

• M is a term that depends on γ; it has type [γ ` term]

A and B are types that are closed; they have type [` tp]

Recall: All meta-variables are associated with a substitution.
 M is implicitely associated with the identity substitution
 A and B are associated with a weakening substitution

• [Ψ] M has type A[Ψ] and stands for a contextual object M which has type A
in the context Ψ [NPP’08]

B. Pientka Mechanizing Meta-Theory in Beluga 28 / 55

Introduction Beluga:Design and implementation

Step 2a: Theorem as Type

Theorem

If D : Γ `M : A and C : Γ `M : B then E : eq A B.

is represented as

Computation-level Type in Beluga

{γ:ctx}[γ ` hastype M A[]] → [γ ` hastype M B[]] → [` eq A B]

• Parameterize computation over contexts, Distinguish between contexts.

• Contexts are classified by context schemas
schema ctx = some [t:tp] block x:term, u:hastype x T;

• M is a term that depends on γ; it has type [γ ` term]

A and B are types that are closed; they have type [` tp]

Recall: All meta-variables are associated with a substitution.
 M is implicitely associated with the identity substitution
 A and B are associated with a weakening substitution

• [Ψ] M has type A[Ψ] and stands for a contextual object M which has type A
in the context Ψ [NPP’08]

B. Pientka Mechanizing Meta-Theory in Beluga 28 / 55

Introduction Beluga:Design and implementation

Step 2a: Theorem as Type

Theorem

If D : Γ `M : A and C : Γ `M : B then E : eq A B.

is represented as

Computation-level Type in Beluga

{γ:ctx}[γ ` hastype M A] → [γ ` hastype M B] → [` eq A B]

• Parameterize computation over contexts, Distinguish between contexts.

• Contexts are classified by context schemas

schema ctx = some [t:tp] block x:term, u:hastype x T;

• M is a term that depends on γ; it has type [γ ` term]

A and B are types that are closed; they have type [` tp]

Recall: All meta-variables are associated with a substitution.
 M is implicitely associated with the identity substitution
 A and B are associated with a weakening substitution

• [Ψ] M has type A[Ψ] and stands for a contextual object M which has type A
in the context Ψ [NPP’08]

B. Pientka Mechanizing Meta-Theory in Beluga 28 / 55

Introduction Beluga:Design and implementation

Step 2a: Theorem as Type

Theorem

If D : Γ `M : A and C : Γ `M : B then E : eq A B.

is represented as

Computation-level Type in Beluga

{γ:ctx}[γ ` hastype M A[]] → [γ ` hastype M B[]] → [` eq A B]

• Parameterize computation over contexts, Distinguish between contexts.

• Contexts are classified by context schemas
schema ctx = some [t:tp] block x:term, u:hastype x T;

• M is a term that depends on γ; it has type [γ ` term]

A and B are types that are closed; they have type [` tp]

Recall: All meta-variables are associated with a substitution.
 M is implicitely associated with the identity substitution
 A and B are associated with a weakening substitution

• [Ψ] M has type A[Ψ] and stands for a contextual object M which has type A
in the context Ψ [NPP’08]

B. Pientka Mechanizing Meta-Theory in Beluga 28 / 55

Introduction Beluga:Design and implementation

Step 2a: Theorem as Type

Theorem

If D : Γ `M : A and C : Γ `M : B then E : eq A B.

is represented as

Computation-level Type in Beluga

{γ:ctx}[γ ` hastype M A[]] → [γ ` hastype M B[]] → [` eq A B]

• Parameterize computation over contexts, Distinguish between contexts.

• Contexts are classified by context schemas
schema ctx = some [t:tp] block x:term, u:hastype x T;

• M is a term that depends on γ; it has type [γ ` term]

A and B are types that are closed; they have type [` tp]

Recall: All meta-variables are associated with a substitution.
 M is implicitely associated with the identity substitution
 A and B are associated with a weakening substitution

• [Ψ] M has type A[Ψ] and stands for a contextual object M which has type A
in the context Ψ [NPP’08]

B. Pientka Mechanizing Meta-Theory in Beluga 28 / 55

Introduction Beluga:Design and implementation

Intrinsic Support for Contexts

schema ctx = some [t:tp] block x:term, u:hastype x t;

• The context x : nat, y : nat⇒ nat is represented as
b1:block (x:term,u:hastype x nat),b2:block (y:term,v:hastype y (arr nat nat))

• Well-formedness: b1:block x:term,u:hastype y nat is ill-formed.
x:term, y:term, u:hastype x nat is ill-formed.

• Declarations are unique: b1 is different from b2

b1.1 is different from b2.1

• Later declarations overshadow earlier ones

• Support Weakening and Substitution lemmas

B. Pientka Mechanizing Meta-Theory in Beluga 29 / 55

Introduction Beluga:Design and implementation

Intrinsic Support for Contexts

schema ctx = some [t:tp] block x:term, u:hastype x t;

• The context x : nat, y : nat⇒ nat is represented as
b1:block (x:term,u:hastype x nat),b2:block (y:term,v:hastype y (arr nat nat))

• Well-formedness: b1:block x:term,u:hastype y nat is ill-formed.
x:term, y:term, u:hastype x nat is ill-formed.

• Declarations are unique: b1 is different from b2

b1.1 is different from b2.1

• Later declarations overshadow earlier ones

• Support Weakening and Substitution lemmas

B. Pientka Mechanizing Meta-Theory in Beluga 29 / 55

Introduction Beluga:Design and implementation

Intrinsic Support for Contexts

schema ctx = some [t:tp] block x:term, u:hastype x t;

• The context x : nat, y : nat⇒ nat is represented as
b1:block (x:term,u:hastype x nat),b2:block (y:term,v:hastype y (arr nat nat))

• Well-formedness: b1:block x:term,u:hastype y nat is ill-formed.
x:term, y:term, u:hastype x nat is ill-formed.

• Declarations are unique: b1 is different from b2

b1.1 is different from b2.1

• Later declarations overshadow earlier ones

• Support Weakening and Substitution lemmas

B. Pientka Mechanizing Meta-Theory in Beluga 29 / 55

Introduction Beluga:Design and implementation

Intrinsic Support for Contexts

schema ctx = some [t:tp] block x:term, u:hastype x t;

• The context x : nat, y : nat⇒ nat is represented as
b1:block (x:term,u:hastype x nat),b2:block (y:term,v:hastype y (arr nat nat))

• Well-formedness: b1:block x:term,u:hastype y nat is ill-formed.
x:term, y:term, u:hastype x nat is ill-formed.

• Declarations are unique: b1 is different from b2

b1.1 is different from b2.1

• Later declarations overshadow earlier ones

• Support Weakening and Substitution lemmas

B. Pientka Mechanizing Meta-Theory in Beluga 29 / 55

Introduction Beluga:Design and implementation

Intrinsic Support for Contexts

schema ctx = some [t:tp] block x:term, u:hastype x t;

• The context x : nat, y : nat⇒ nat is represented as
b1:block (x:term,u:hastype x nat),b2:block (y:term,v:hastype y (arr nat nat))

• Well-formedness: b1:block x:term,u:hastype y nat is ill-formed.
x:term, y:term, u:hastype x nat is ill-formed.

• Declarations are unique: b1 is different from b2

b1.1 is different from b2.1

• Later declarations overshadow earlier ones

• Support Weakening and Substitution lemmas

B. Pientka Mechanizing Meta-Theory in Beluga 29 / 55

Introduction Beluga:Design and implementation

Intrinsic Support for Contexts

schema ctx = some [t:tp] block x:term, u:hastype x t;

• The context x : nat, y : nat⇒ nat is represented as
b1:block (x:term,u:hastype x nat),b2:block (y:term,v:hastype y (arr nat nat))

• Well-formedness: b1:block x:term,u:hastype y nat is ill-formed.
x:term, y:term, u:hastype x nat is ill-formed.

• Declarations are unique: b1 is different from b2

b1.1 is different from b2.1

• Later declarations overshadow earlier ones

• Support Weakening and Substitution lemmas

B. Pientka Mechanizing Meta-Theory in Beluga 29 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

rec unique:(γ:ctx)[γ ` hastype M A[]] → [γ ` hastype M B[]] → [` eq A B] =

fn d ⇒ fn c ⇒ case d of

| [γ ` t_app D1 D2] ⇒ % Application Case
let [γ ` t_app C1 C2] = c in
let [` ref] = unique [γ ` D1] [γ ` C1] in

[` ref]

| [γ ` t_lam λx.λu. D] ⇒ % Abstraction Case
let [γ ` t_lam λx.λu. C] = c in
let [` ref] = unique [γ,b:block(x:term, u:hastype x _) ` D[..., b.1, b.2]]

[γ,b ` C[...,b.1, b.2]] in
[` ref]

| [γ ` #q.2] ⇒ % d : oft #q.1 T % Assumption Case
let [γ ` #r.2] = c in % c : oft #r.1 S

[` ref] ;

Recalll:
#q:block x:term, u:hastype x T

#r:block x:term, u:hastype x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Mechanizing Meta-Theory in Beluga 30 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

rec unique:(γ:ctx)[γ ` hastype M A[]] → [γ ` hastype M B[]] → [` eq A B] =

fn d ⇒ fn c ⇒ case d of

| [γ ` t_app D1 D2] ⇒ % Application Case
let [γ ` t_app C1 C2] = c in
let [` ref] = unique [γ ` D1] [γ ` C1] in

[` ref]

| [γ ` t_lam λx.λu. D] ⇒ % Abstraction Case
let [γ ` t_lam λx.λu. C] = c in
let [` ref] = unique [γ,b:block(x:term, u:hastype x _) ` D[..., b.1, b.2]]

[γ,b ` C[...,b.1, b.2]] in
[` ref]

| [γ ` #q.2] ⇒ % d : oft #q.1 T % Assumption Case
let [γ ` #r.2] = c in % c : oft #r.1 S

[` ref] ;

Recalll:
#q:block x:term, u:hastype x T

#r:block x:term, u:hastype x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Mechanizing Meta-Theory in Beluga 30 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

rec unique:(γ:ctx)[γ ` hastype M A[]] → [γ ` hastype M B[]] → [` eq A B] =

fn d ⇒ fn c ⇒ case d of

| [γ ` t_app D1 D2] ⇒ % Application Case
let [γ ` t_app C1 C2] = c in
let [` ref] = unique [γ ` D1] [γ ` C1] in

[` ref]

| [γ ` t_lam λx.λu. D] ⇒ % Abstraction Case
let [γ ` t_lam λx.λu. C] = c in
let [` ref] = unique [γ,b:block(x:term, u:hastype x _) ` D[..., b.1, b.2]]

[γ,b ` C[...,b.1, b.2]] in
[` ref]

| [γ ` #q.2] ⇒ % d : oft #q.1 T % Assumption Case
let [γ ` #r.2] = c in % c : oft #r.1 S

[` ref] ;

Recalll:
#q:block x:term, u:hastype x T

#r:block x:term, u:hastype x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Mechanizing Meta-Theory in Beluga 30 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

rec unique:(γ:ctx)[γ ` hastype M A[]] → [γ ` hastype M B[]] → [` eq A B] =

fn d ⇒ fn c ⇒ case d of

| [γ ` t_app D1 D2] ⇒ % Application Case
let [γ ` t_app C1 C2] = c in
let [` ref] = unique [γ ` D1] [γ ` C1] in

[` ref]

| [γ ` t_lam λx.λu. D] ⇒ % Abstraction Case
let [γ ` t_lam λx.λu. C] = c in
let [` ref] = unique [γ,b:block(x:term, u:hastype x _) ` D[..., b.1, b.2]]

[γ,b ` C[...,b.1, b.2]] in
[` ref]

| [γ ` #q.2] ⇒ % d : oft #q.1 T % Assumption Case
let [γ ` #r.2] = c in % c : oft #r.1 S

[` ref] ;

Recalll:
#q:block x:term, u:hastype x T

#r:block x:term, u:hastype x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Mechanizing Meta-Theory in Beluga 30 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

rec unique:(γ:ctx)[γ ` hastype M A[]] → [γ ` hastype M B[]] → [` eq A B] =

fn d ⇒ fn c ⇒ case d of

| [γ ` t_app D1 D2] ⇒ % Application Case
let [γ ` t_app C1 C2] = c in
let [` ref] = unique [γ ` D1] [γ ` C1] in

[` ref]

| [γ ` t_lam λx.λu. D] ⇒ % Abstraction Case
let [γ ` t_lam λx.λu. C] = c in
let [` ref] = unique [γ,b:block(x:term, u:hastype x _) ` D[..., b.1, b.2]]

[γ,b ` C[...,b.1, b.2]] in
[` ref]

| [γ ` #q.2] ⇒ % d : oft #q.1 T % Assumption Case
let [γ ` #r.2] = c in % c : oft #r.1 S

[` ref] ;

Recalll:
#q:block x:term, u:hastype x T

#r:block x:term, u:hastype x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Mechanizing Meta-Theory in Beluga 30 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

rec unique:(γ:ctx)[γ ` hastype M A[]] → [γ ` hastype M B[]] → [` eq A B] =

fn d ⇒ fn c ⇒ case d of

| [γ ` t_app D1 D2] ⇒ % Application Case
let [γ ` t_app C1 C2] = c in
let [` ref] = unique [γ ` D1] [γ ` C1] in

[` ref]

| [γ ` t_lam λx.λu. D] ⇒ % Abstraction Case
let [γ ` t_lam λx.λu. C] = c in
let [` ref] = unique [γ,b:block(x:term, u:hastype x _) ` D[..., b.1, b.2]]

[γ,b ` C[...,b.1, b.2]] in
[` ref]

| [γ ` #q.2] ⇒ % d : oft #q.1 T % Assumption Case
let [γ ` #r.2] = c in % c : oft #r.1 S

[` ref] ;

Recalll:
#q:block x:term, u:hastype x T

#r:block x:term, u:hastype x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Mechanizing Meta-Theory in Beluga 30 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

rec unique:(γ:ctx)[γ ` hastype M A[]] → [γ ` hastype M B[]] → [` eq A B] =

fn d ⇒ fn c ⇒ case d of

| [γ ` t_app D1 D2] ⇒ % Application Case
let [γ ` t_app C1 C2] = c in
let [` ref] = unique [γ ` D1] [γ ` C1] in

[` ref]

| [γ ` t_lam λx.λu. D] ⇒ % Abstraction Case
let [γ ` t_lam λx.λu. C] = c in
let [` ref] = unique [γ,b:block(x:term, u:hastype x _) ` D[..., b.1, b.2]]

[γ,b ` C[...,b.1, b.2]] in
[` ref]

| [γ ` #q.2] ⇒ % d : oft #q.1 T % Assumption Case
let [γ ` #r.2] = c in % c : oft #r.1 S

[` ref] ;

Recalll:
#q:block x:term, u:hastype x T

#r:block x:term, u:hastype x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Mechanizing Meta-Theory in Beluga 30 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

rec unique:(γ:ctx)[γ ` hastype M A[]] → [γ ` hastype M B[]] → [` eq A B] =

fn d ⇒ fn c ⇒ case d of

| [γ ` t_app D1 D2] ⇒ % Application Case
let [γ ` t_app C1 C2] = c in
let [` ref] = unique [γ ` D1] [γ ` C1] in

[` ref]

| [γ ` t_lam λx.λu. D] ⇒ % Abstraction Case
let [γ ` t_lam λx.λu. C] = c in
let [` ref] = unique [γ,b:block(x:term, u:hastype x _) ` D[..., b.1, b.2]]

[γ,b ` C[...,b.1, b.2]] in
[` ref]

| [γ ` #q.2] ⇒ % d : oft #q.1 T % Assumption Case
let [γ ` #r.2] = c in % c : oft #r.1 S

[` ref] ;

Recalll:
#q:block x:term, u:hastype x T

#r:block x:term, u:hastype x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Mechanizing Meta-Theory in Beluga 30 / 55

Introduction Beluga:Design and implementation

Type Uniqueness

rec unique:(γ:ctx)[γ ` hastype M A[]] → [γ ` hastype M B[]] → [` eq A B] =

fn d ⇒ fn c ⇒ case d of

| [γ ` t_app D1 D2] ⇒ % Application Case
let [γ ` t_app C1 C2] = c in
let [` ref] = unique [γ ` D1] [γ ` C1] in

[` ref]

| [γ ` t_lam λx.λu. D] ⇒ % Abstraction Case
let [γ ` t_lam λx.λu. C] = c in
let [` ref] = unique [γ,b:block(x:term, u:hastype x _) ` D[..., b.1, b.2]]

[γ,b ` C[...,b.1, b.2]] in
[` ref]

| [γ ` #q.2] ⇒ % d : oft #q.1 T % Assumption Case
let [γ ` #r.2] = c in % c : oft #r.1 S

[` ref] ;

Recalll:
#q:block x:term, u:hastype x T

#r:block x:term, u:hastype x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Mechanizing Meta-Theory in Beluga 30 / 55

Introduction Beluga:Design and implementation

Key Ideas

• Contexts are first-class and are classified by schemas

• Contextual Types/Objects characterize derivation trees that depend
on assumptions

• Parameter Variables distinguish between variables and general objects

• Simultaneous Substitutions allow us to move between contexts
(Identity, Weakening, Uncurrying)

• Totality Checker verifies that all cases, including the variable cases,
are covered and all recursive calls are well-founded.

Our proof/programming language has not changed - instead we have
extended LF to model contexts, contextual objects, simultaneous
substitutions, meta-variables and parameter variables.

B. Pientka Mechanizing Meta-Theory in Beluga 31 / 55

Introduction Beluga:Design and implementation

Brief Comparison

• Twelf [Pf,Sch’99]: Encode proofs as relations within LF

– Requires lemma to prove injectivity of arr constructor.
– No explicit contexts
– Parameter case folded into abstraction case

• Delphin [Sch,Pos’08]: Encode proofs as functions

– Requires lemma to prove injectivity of constructor
– Cannot express that types T and S and eq T S are closed.
– Variable carrying continuation as extra argument to handle context

• Abella [Gacek’08]: Encode second-order hereditary Harrop (HH) logic in G,
an extension of first-order logic with a new quantifier ∇, and develop
inductive proofs in G by reasoning about the size of HH derivations .

– Equality built-into the logic
– Contexts are represented as lists
– Requires lemmas about these lists (for example that all assumptions

occur uniquely)

B. Pientka Mechanizing Meta-Theory in Beluga 32 / 55

Introduction Beluga:Design and implementation

Translation between lambda-terms and de Bruijn

B. Pientka Mechanizing Meta-Theory in Beluga 33 / 55

Introduction Beluga:Design and implementation

Translation between lambda-terms and de Bruijn

B. Pientka Mechanizing Meta-Theory in Beluga 34 / 55

Introduction Beluga:Design and implementation

Lessons Learned

• How to specify formal systems.

- Binders in the object language are modelled using LF functions
- Hypothetical and parametric derivations are modelled using LF

functions
- Encoding equality
- Encoding falsehood

- Inductive and stratified definitions

• How to write proofs as recursive functions using pattern matching

1. Proofs by induction on closed derivation trees
2. Proofs using falsehood
3. Proofs by induction on open derivation trees

4. Proofs by logical relations

B. Pientka Mechanizing Meta-Theory in Beluga 35 / 55

Introduction Beluga:Design and implementation

Lessons Learned

• How to specify formal systems.

- Binders in the object language are modelled using LF functions
- Hypothetical and parametric derivations are modelled using LF

functions
- Encoding equality
- Encoding falsehood
- Inductive and stratified definitions

• How to write proofs as recursive functions using pattern matching

1. Proofs by induction on closed derivation trees
2. Proofs using falsehood
3. Proofs by induction on open derivation trees
4. Proofs by logical relations

B. Pientka Mechanizing Meta-Theory in Beluga 35 / 55

Introduction Beluga:Design and implementation

Translation between lambda-terms and de Bruijn

B. Pientka Mechanizing Meta-Theory in Beluga 36 / 55

Introduction Beluga:Design and implementation

Challenging Benchmark: Proofs by Logical Relations

Weak Normalization of the simply-typed Lambda-Calculus

“I discovered that the core part of the proof (here proving lemmas about
CR) is fairly straightforward and only requires a good understanding of the
paper version. However, in completing the proof I observed that in certain
places I had to invest much more work than expected, e.g. proving lemmas
about substitution and weakening.” T. Altenkirch [TLCA’93]

• Binders: lambda-binder, ∀ in reducibility definition, quantification over

substitutions and contexts

• Contexts: Uniqueness of assumptions, weakening, etc.

• Simultanous substitution and algebraic properties:
Substitution lemma, composition, decomposition, associativity, identity, etc.

[·]M = M

[σ,N/x]M = [N/x][σ, x/x]M

[σ1][σ2]M = [[σ1]σ2]M

a dozen such properties are needed

B. Pientka Mechanizing Meta-Theory in Beluga 37 / 55

Introduction Beluga:Design and implementation

Challenging Benchmark: Proofs by Logical Relations

Weak Normalization of the simply-typed Lambda-Calculus

“I discovered that the core part of the proof (here proving lemmas about
CR) is fairly straightforward and only requires a good understanding of the
paper version. However, in completing the proof I observed that in certain
places I had to invest much more work than expected, e.g. proving lemmas
about substitution and weakening.” T. Altenkirch [TLCA’93]

• Binders: lambda-binder, ∀ in reducibility definition, quantification over

substitutions and contexts

• Contexts: Uniqueness of assumptions, weakening, etc.

• Simultanous substitution and algebraic properties:
Substitution lemma, composition, decomposition, associativity, identity, etc.

[·]M = M

[σ,N/x]M = [N/x][σ, x/x]M

[σ1][σ2]M = [[σ1]σ2]M

a dozen such properties are needed
B. Pientka Mechanizing Meta-Theory in Beluga 37 / 55

Introduction Beluga:Design and implementation

The Set-up: Simply Typed Lambda-Calculus - revisited

Types A,B::= i Terms M, N ::= x | c
| A⇒ B | lam x .M

| app M N

Evaluation Judgment: M −→ M ′ Call-by-Name (to simplify things)

app (lam x .M) N −→ [N/x]M
sbeta

M −→ M
srefl

M −→ M ′

app M N −→ app M ′ N
sapp M −→ M ′ M ′ −→ N

M −→ N
strans

Typing Judgment: M : A read as “M has type A” (Gentzen-style)

c : i
const

x : A
u

...
M : B

lam x .M : A⇒ B
lamx,u M : A⇒ B N : A

app M N : B
app

B. Pientka Mechanizing Meta-Theory in Beluga 38 / 55

Introduction Beluga:Design and implementation

The Set-up: Simply Typed Lambda-Calculus - revisited

Types A,B::= i Terms M, N ::= x | c
| A⇒ B | lam x .M

| app M N

Evaluation Judgment: M −→ M ′ Call-by-Name (to simplify things)

app (lam x .M) N −→ [N/x]M
sbeta

M −→ M
srefl

M −→ M ′

app M N −→ app M ′ N
sapp M −→ M ′ M ′ −→ N

M −→ N
strans

Typing Judgment: M : A read as “M has type A” (Gentzen-style)

c : i
const

x : A
u

...
M : B

lam x .M : A⇒ B
lamx,u M : A⇒ B N : A

app M N : B
app

B. Pientka Mechanizing Meta-Theory in Beluga 38 / 55

Introduction Beluga:Design and implementation

Weak Normalization for Simply Typed Lambda-calculus

Theorem

If ` M : A then M halts, i.e. there exists a value V s.t. M −→∗ V .

Proof.

1 Define reducibility candidate RA

Ri = {M | M halts}
RA⇒B = {M | M halts and ∀N ∈ RA, (app M N) ∈ RB}

2 If M ∈ RA then M halts.

3 Backwards closed: If M ′ ∈ RA and M −→ M ′ then M ∈ RA.

4 Fundamental Lemma: If ` M : A then M ∈ RA. (Requires a generalization)

B. Pientka Mechanizing Meta-Theory in Beluga 39 / 55

Introduction Beluga:Design and implementation

Weak Normalization for Simply Typed Lambda-calculus

Theorem

If ` M : A then M halts, i.e. there exists a value V s.t. M −→∗ V .

Proof.

1 Define reducibility candidate RA

Ri = {M | M halts}
RA⇒B = {M | M halts and ∀N ∈ RA, (app M N) ∈ RB}

2 If M ∈ RA then M halts.

3 Backwards closed: If M ′ ∈ RA and M −→ M ′ then M ∈ RA.

4 Fundamental Lemma: If ` M : A then M ∈ RA. (Requires a generalization)

B. Pientka Mechanizing Meta-Theory in Beluga 39 / 55

Introduction Beluga:Design and implementation

Weak Normalization for Simply Typed Lambda-calculus

Theorem

If ` M : A then M halts, i.e. there exists a value V s.t. M −→∗ V .

Proof.

1 Define reducibility candidate RA

Ri = {M | M halts}
RA⇒B = {M | M halts and ∀N ∈ RA, (app M N) ∈ RB}

2 If M ∈ RA then M halts.

3 Backwards closed: If M ′ ∈ RA and M −→ M ′ then M ∈ RA.

4 Fundamental Lemma: If ` M : A then M ∈ RA. (Requires a generalization)

B. Pientka Mechanizing Meta-Theory in Beluga 39 / 55

Introduction Beluga:Design and implementation

Generalization of Fundamental Lemma

Lemma (Main lemma)

If D : Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

where σ ∈ RΓ is defined as:

· ∈ R·
σ ∈ RΓ N ∈ RA

(σ,N/x) ∈ RΓ,x :A

B. Pientka Mechanizing Meta-Theory in Beluga 40 / 55

Introduction Beluga:Design and implementation

Generalization of Fundamental Lemma

Lemma (Main lemma)

If D : Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

Proof.

Case D =

D1

Γ, x :A ` M : B

Γ ` lam x .M : A⇒ B
lam

[σ](lam x .M) = lam x .([σ, x/x]M) by properties of substitution
halts (lam x .[σ, x/x]M) since it is a value
Suppose N ∈ RA.

[σ,N/x]M ∈ RB by I.H. on D1 since σ ∈ RΓ

[N/x][σ, x/x]M ∈ RB by properties of substitution

app (lam x . [σ, x/x]M) N ∈ RB by Backwards closure

Hence [σ](lam x .M) ∈ RA⇒B by definition

B. Pientka Mechanizing Meta-Theory in Beluga 41 / 55

Introduction Beluga:Design and implementation

Step 1a: Represent Types and Lambda-terms in LF

Types A,B::= i Terms M, N ::= x | c
| A⇒ B | lam x .M

| app M N
Typing rules

c : i
const

x : A
u

...
M : B

lam x .M : A⇒ B
lamx M : A⇒ B N : A

app M N : B
app

Intrinsically typed Term Representation

LF representation in Beluga

LF tp:type =
| i: tp
| arr: tp → tp → tp;

LF tm: tp → type =
| c : tm i
| lam: (tm A → tm B) → tm (arr A B)
| app: tm (arr A B) → tm A → tm B;

B. Pientka Mechanizing Meta-Theory in Beluga 42 / 55

Introduction Beluga:Design and implementation

Step 1a: Represent Types and Lambda-terms in LF

Types A,B::= i Terms M, N ::= x | c
| A⇒ B | lam x .M

| app M N
Typing rules

c : i
const

x : A
u

...
M : B

lam x .M : A⇒ B
lamx M : A⇒ B N : A

app M N : B
app

Intrinsically typed Term Representation

LF representation in Beluga

LF tp:type =
| i: tp
| arr: tp → tp → tp;

LF tm: tp → type =
| c : tm i
| lam: (tm A → tm B) → tm (arr A B)
| app: tm (arr A B) → tm A → tm B;

B. Pientka Mechanizing Meta-Theory in Beluga 42 / 55

Introduction Beluga:Design and implementation

Step 1a: Represent Semantics in LF

B. Pientka Mechanizing Meta-Theory in Beluga 43 / 55

Introduction Beluga:Design and implementation

Step 1b: Reducibility Candidates as Stratified Types

Reducibility candidates for terms M ∈ RA:

Ri = {M | halts M}
RA⇒B = {M | halts M and ∀N ∈ RA, (app M N) ∈ RB}

Computation-level data types in Beluga

stratified Reduce : {A:[` tp]} {M:[` tm A]} type =
| I : [` halts M] → Reduce [` i] [` M]
| Arr : [` halts M] →

({N:[` tm A]} Reduce [` A] [` N] → Reduce [` B] [` app M N])
→ Reduce [` arr A B] [` M];

• [` app M N] and [` arr A B] are contextual types [TOCL’08].

• Note: → is overloaded.

- → is the LF function space : binders in the object language are
modelled by LF functions (used inside [])

- → is a computation-level function (used outside [])

• Not strictly positive definition, but stratified.

B. Pientka Mechanizing Meta-Theory in Beluga 44 / 55

Introduction Beluga:Design and implementation

Step 1b: Reducibility Candidates as Stratified Types

Reducibility candidates for terms M ∈ RA:

Ri = {M | halts M}
RA⇒B = {M | halts M and ∀N ∈ RA, (app M N) ∈ RB}

Computation-level data types in Beluga

stratified Reduce : {A:[` tp]} {M:[` tm A]} type =
| I : [` halts M] → Reduce [` i] [` M]
| Arr : [` halts M] →

({N:[` tm A]} Reduce [` A] [` N] → Reduce [` B] [` app M N])
→ Reduce [` arr A B] [` M];

• [` app M N] and [` arr A B] are contextual types [TOCL’08].

• Note: → is overloaded.

- → is the LF function space : binders in the object language are
modelled by LF functions (used inside [])

- → is a computation-level function (used outside [])

• Not strictly positive definition, but stratified.

B. Pientka Mechanizing Meta-Theory in Beluga 44 / 55

Introduction Beluga:Design and implementation

Step 1b: Reducibility Candidates as Inductive Types

Reducibility candidates for substitutions σ ∈ RΓ :

· ∈ R·
σ ∈ RΓ N ∈ RA

(σ,N/x) ∈ RΓ,x :A

Computation-level data types in Beluga

inductive RedSub : (Γ:ctx){σ: ` Γ} type =
| Nil : RedSub [` ^]
| Cons : RedSub [` σ] → Reduce [` A] [` M] → RedSub [` σ, M];

• Contexts are structured sequences and are classified by context schemas

schema ctx = x:tm A.

• Substitution τ are first-class and have type Ψ ` Φ providing a mapping from
Φ to Ψ.

B. Pientka Mechanizing Meta-Theory in Beluga 45 / 55

Introduction Beluga:Design and implementation

Step 1b: Reducibility Candidates as Inductive Types

Reducibility candidates for substitutions σ ∈ RΓ :

· ∈ R·
σ ∈ RΓ N ∈ RA

(σ,N/x) ∈ RΓ,x :A

Computation-level data types in Beluga

inductive RedSub : (Γ:ctx){σ: ` Γ} type =
| Nil : RedSub [` ^]
| Cons : RedSub [` σ] → Reduce [` A] [` M] → RedSub [` σ, M];

• Contexts are structured sequences and are classified by context schemas

schema ctx = x:tm A.

• Substitution τ are first-class and have type Ψ ` Φ providing a mapping from
Φ to Ψ.

B. Pientka Mechanizing Meta-Theory in Beluga 45 / 55

Introduction Beluga:Design and implementation

Step 2: Theorems as Types

Lemma (Backward closed)

If M −→ M ′ and M ′ ∈ RA then M ∈ RA.

rec closed : [` mstep M M’] → Reduce [` A] [` M’] → Reduce [` A] [` M] = ? ;

Lemma (Main lemma)

If Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

rec main: {Γ:ctx}{M:[Γ` tm A]} RedSub [` σ] →Reduce [` A] [` M[σ]] = ? ;

B. Pientka Mechanizing Meta-Theory in Beluga 46 / 55

Introduction Beluga:Design and implementation

Step 2: Theorems as Types

Lemma (Backward closed)

If M −→ M ′ and M ′ ∈ RA then M ∈ RA.

rec closed : [` mstep M M’] → Reduce [` A] [` M’] → Reduce [` A] [` M] = ? ;

Lemma (Main lemma)

If Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

rec main: {Γ:ctx}{M:[Γ` tm A[]]} RedSub [` σ] →Reduce [` A] [` M[σ]] = ? ;

B. Pientka Mechanizing Meta-Theory in Beluga 47 / 55

Introduction Beluga:Design and implementation

Step 2: Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A[]]} RedSub [` σ] →Reduce [` A] [` M[σ]] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h_value s_refl v_lam]
(mlam N ⇒ fn rN ⇒ closed [` s_beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h_value s_refl v_c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 48 / 55

Introduction Beluga:Design and implementation

Step 2: Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A[]]} RedSub [` σ] →Reduce [` A] [` M[σ]] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h_value s_refl v_lam]
(mlam N ⇒ fn rN ⇒ closed [` s_beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h_value s_refl v_c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 48 / 55

Introduction Beluga:Design and implementation

Step 2: Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A[]]} RedSub [` σ] →Reduce [` A] [` M[σ]] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h_value s_refl v_lam]
(mlam N ⇒ fn rN ⇒ closed [` s_beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h_value s_refl v_c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 48 / 55

Introduction Beluga:Design and implementation

Step 2: Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A[]]} RedSub [` σ] →Reduce [` A] [` M[σ]] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h_value s_refl v_lam]
(mlam N ⇒ fn rN ⇒ closed [` s_beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h_value s_refl v_c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 48 / 55

Introduction Beluga:Design and implementation

Step 2: Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A[]]} RedSub [` σ] →Reduce [` A] [` M[σ]] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h_value s_refl v_lam]
(mlam N ⇒ fn rN ⇒ closed [` s_beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h_value s_refl v_c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 48 / 55

Introduction Beluga:Design and implementation

Step 2: Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A[]]} RedSub [` σ] →Reduce [` A] [` M[σ]] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h_value s_refl v_lam]
(mlam N ⇒ fn rN ⇒ closed [` s_beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h_value s_refl v_c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 48 / 55

Introduction Beluga:Design and implementation

Step 2: Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A[]]} RedSub [` σ] →Reduce [` A] [` M[σ]] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h_value s_refl v_lam]
(mlam N ⇒ fn rN ⇒ closed [` s_beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h_value s_refl v_c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 48 / 55

Introduction Beluga:Design and implementation

More Examples using Stratified and Inductive Types

• Proofs using logical relations
Algorithmic Equality in LF [LFMTP’15]

• Proofs using context relations
Completeness of algorithmic and declarative equality for lambda-terms

[JAR’15]

• Program transformations

- Type preserving Closure Conversion and Hoisting [CPP’13]
- Normalization by Evaluation [POPL’12]

B. Pientka Mechanizing Meta-Theory in Beluga 49 / 55

Introduction Beluga:Design and implementation

Proofs: The tip of the iceberg

Main Proof

Eigenvariables

Hypothesis Variables
Context

Renaming

Derivation TreeSubstitution

Scope Binding

“We may think of [the] proof as an iceberg. In the top of it, we find what
we usually consider the real proof; underwater, the most of the matter,
consisting of all mathematical preliminaries a reader must know in order to
understand what is going on.” S. Berardi [1990]

B. Pientka Mechanizing Meta-Theory in Beluga 50 / 55

Introduction Beluga:Design and implementation

Revisiting the Design of Beluga

• Top : Functional programming with indexed types [POPL’08,POPL’12]

Case analysis Case analysis and pattern matching

Inversion Pattern matching using let-expression

Induction hypothesis Recursive call

• Bottom: Contextual LF

On paper proof In Beluga [IJCAR’10,CADE’15]

Well-formed derivations Dependent types
Renaming,Substitution α-renaming, β-reduction in LF

Well-scoped derivation Contextual types and objects [TOCL’08]

Context Context schemas

Properties of contexts Typing for schemas

(weakening, uniqueness)

Substitutions Substitution type [LFMTP’13]

(composition, identity)

B. Pientka Mechanizing Meta-Theory in Beluga 51 / 55

Introduction Beluga:Design and implementation

Alternatives

General Theorem Proving Environments

• Calculus of Construction (Coq) / Martin Löf Type Theory (Agda)
No special support for variables, assumptions, derivation trees, etc.

About a dozen extra lemmas

• Isabelle / Nominal
support for variable names, but not for assumptions, derivation trees, etc.

based on nominal set theory; about a dozen extra lemmas

Domain-specific Provers (Higher-Order Abstract Syntax (HOAS))

• Abella: encode second-order hereditary Harrop (HH) logic in G, an
extension of first-order logic with a new quantifier ∇, and develop inductive
proofs in G by reasoning about the size of HH derivations .

diverges a bit from on-paper proof; 4 additional lemmas

• Twelf: Too weak for directly encoding such proofs; implement auxiliary

logic.

B. Pientka Mechanizing Meta-Theory in Beluga 52 / 55

Introduction Beluga:Design and implementation

Alternatives

General Theorem Proving Environments

• Calculus of Construction (Coq) / Martin Löf Type Theory (Agda)
No special support for variables, assumptions, derivation trees, etc.

About a dozen extra lemmas

• Isabelle / Nominal
support for variable names, but not for assumptions, derivation trees, etc.

based on nominal set theory; about a dozen extra lemmas

Domain-specific Provers (Higher-Order Abstract Syntax (HOAS))

• Abella: encode second-order hereditary Harrop (HH) logic in G, an
extension of first-order logic with a new quantifier ∇, and develop inductive
proofs in G by reasoning about the size of HH derivations .

diverges a bit from on-paper proof; 4 additional lemmas

• Twelf: Too weak for directly encoding such proofs; implement auxiliary

logic.

B. Pientka Mechanizing Meta-Theory in Beluga 52 / 55

Introduction Beluga:Design and implementation

Lessons Learned

• How to specify formal systems.

- Binders in the object language are modelled using LF functions
- Hypothetical and parametric derivations are modelled using LF

functions
- Encoding equality
- Encoding falsehood
- Inductive and stratified definitions

• How to write proofs as recursive functions using pattern matching

1. Proofs by induction on closed derivation trees
2. Proofs using falsehood
3. Proofs by induction on open derivation trees
4. Proofs by logical relations

B. Pientka Mechanizing Meta-Theory in Beluga 53 / 55

Introduction Beluga:Design and implementation

Current Work

• Prototype in OCaml (ongoing - last release March 2015)
providing an interactive programming mode, totality checker [CADE’15]

https://github.com/Beluga-lang/Beluga

• Mechanizing Types and Programming Languages - A companion:

https://github.com/Beluga-lang/Meta

• Coinduction in Beluga (D. Thibodeau, A. Cave)

Extending work on simply-typed copatterns [POPL’13] to Beluga

Long term: reason about reactive systems [POPL’14]

• Case study: Certified compiler (O. Savary Belanger) [CPP’13]

• Extending Beluga to full dependent types (A. Cave)

• Type reconstruction (F. Ferreira [PPDP’14] and [JFP’13])

• ORBI - Benchmarks for comparing systems supporting HOAS
encodings [JAR’15,LFMTP’15] (A. Felty, A. Momigliano, March 2015)

B. Pientka Mechanizing Meta-Theory in Beluga 54 / 55

https://github.com/Beluga-lang/Beluga
https://github.com/Beluga-lang/Meta

Introduction Beluga:Design and implementation

The End

Thank you!

Download prototype and examples at

http://complogic.cs.mcgill.ca/beluga/

Thanks go to: Andrew Cave, Joshua Dunfield, Olivier Savary Be-
langer, Matthias Boespflug, Scott Cooper, Francisco Ferreira, Aidan
Marchildon, Stefan Monnier, Agata Murawska, Nicolas Jeannerod,
David Thibodeau, Shawn Otis, Rohan Jacob Rao, Shanshan Ruan,
Tao Xue

“A language that doesn’t affect the way you think about
programming, is not worth knowing.“ - Alan Perlis

B. Pientka Mechanizing Meta-Theory in Beluga 55 / 55

	Introduction
	Beluga:Design and implementation

